160 lines
No EOL
5.2 KiB
C++
160 lines
No EOL
5.2 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Tadas Baltrusaitis all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef __ROTATION_HELPERS_h_
|
|
#define __ROTATION_HELPERS_h_
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/calib3d.hpp>
|
|
|
|
namespace Utilities
|
|
{
|
|
//===========================================================================
|
|
// Angle representation conversion helpers
|
|
//===========================================================================
|
|
|
|
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
|
|
static cv::Matx33d Euler2RotationMatrix(const cv::Vec3d& eulerAngles)
|
|
{
|
|
cv::Matx33d rotation_matrix;
|
|
|
|
double s1 = sin(eulerAngles[0]);
|
|
double s2 = sin(eulerAngles[1]);
|
|
double s3 = sin(eulerAngles[2]);
|
|
|
|
double c1 = cos(eulerAngles[0]);
|
|
double c2 = cos(eulerAngles[1]);
|
|
double c3 = cos(eulerAngles[2]);
|
|
|
|
rotation_matrix(0, 0) = c2 * c3;
|
|
rotation_matrix(0, 1) = -c2 *s3;
|
|
rotation_matrix(0, 2) = s2;
|
|
rotation_matrix(1, 0) = c1 * s3 + c3 * s1 * s2;
|
|
rotation_matrix(1, 1) = c1 * c3 - s1 * s2 * s3;
|
|
rotation_matrix(1, 2) = -c2 * s1;
|
|
rotation_matrix(2, 0) = s1 * s3 - c1 * c3 * s2;
|
|
rotation_matrix(2, 1) = c3 * s1 + c1 * s2 * s3;
|
|
rotation_matrix(2, 2) = c1 * c2;
|
|
|
|
return rotation_matrix;
|
|
}
|
|
|
|
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
|
|
static cv::Vec3d RotationMatrix2Euler(const cv::Matx33d& rotation_matrix)
|
|
{
|
|
double q0 = sqrt(1 + rotation_matrix(0, 0) + rotation_matrix(1, 1) + rotation_matrix(2, 2)) / 2.0;
|
|
double q1 = (rotation_matrix(2, 1) - rotation_matrix(1, 2)) / (4.0*q0);
|
|
double q2 = (rotation_matrix(0, 2) - rotation_matrix(2, 0)) / (4.0*q0);
|
|
double q3 = (rotation_matrix(1, 0) - rotation_matrix(0, 1)) / (4.0*q0);
|
|
|
|
double t1 = 2.0 * (q0*q2 + q1*q3);
|
|
|
|
double yaw = asin(2.0 * (q0*q2 + q1*q3));
|
|
double pitch = atan2(2.0 * (q0*q1 - q2*q3), q0*q0 - q1*q1 - q2*q2 + q3*q3);
|
|
double roll = atan2(2.0 * (q0*q3 - q1*q2), q0*q0 + q1*q1 - q2*q2 - q3*q3);
|
|
|
|
return cv::Vec3d(pitch, yaw, roll);
|
|
}
|
|
|
|
static cv::Vec3d Euler2AxisAngle(const cv::Vec3d& euler)
|
|
{
|
|
cv::Matx33d rotMatrix = Euler2RotationMatrix(euler);
|
|
cv::Vec3d axis_angle;
|
|
cv::Rodrigues(rotMatrix, axis_angle);
|
|
return axis_angle;
|
|
}
|
|
|
|
static cv::Vec3d AxisAngle2Euler(const cv::Vec3d& axis_angle)
|
|
{
|
|
cv::Matx33d rotation_matrix;
|
|
cv::Rodrigues(axis_angle, rotation_matrix);
|
|
return RotationMatrix2Euler(rotation_matrix);
|
|
}
|
|
|
|
static cv::Matx33d AxisAngle2RotationMatrix(const cv::Vec3d& axis_angle)
|
|
{
|
|
cv::Matx33d rotation_matrix;
|
|
cv::Rodrigues(axis_angle, rotation_matrix);
|
|
return rotation_matrix;
|
|
}
|
|
|
|
static cv::Vec3d RotationMatrix2AxisAngle(const cv::Matx33d& rotation_matrix)
|
|
{
|
|
cv::Vec3d axis_angle;
|
|
cv::Rodrigues(rotation_matrix, axis_angle);
|
|
return axis_angle;
|
|
}
|
|
|
|
// Generally useful 3D functions
|
|
static void Project(cv::Mat_<double>& dest, const cv::Mat_<double>& mesh, double fx, double fy, double cx, double cy)
|
|
{
|
|
dest = cv::Mat_<double>(mesh.rows, 2, 0.0);
|
|
|
|
int num_points = mesh.rows;
|
|
|
|
double X, Y, Z;
|
|
|
|
cv::Mat_<double>::const_iterator mData = mesh.begin();
|
|
cv::Mat_<double>::iterator projected = dest.begin();
|
|
|
|
for (int i = 0; i < num_points; i++)
|
|
{
|
|
// Get the points
|
|
X = *(mData++);
|
|
Y = *(mData++);
|
|
Z = *(mData++);
|
|
|
|
double x;
|
|
double y;
|
|
|
|
// if depth is 0 the projection is different
|
|
if (Z != 0)
|
|
{
|
|
x = ((X * fx / Z) + cx);
|
|
y = ((Y * fy / Z) + cy);
|
|
}
|
|
else
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
}
|
|
|
|
// Project and store in dest matrix
|
|
(*projected++) = x;
|
|
(*projected++) = y;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
#endif |