294 lines
No EOL
8.2 KiB
C++
294 lines
No EOL
8.2 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// FaceAnalyser_Interop.h
|
|
#ifndef __FACE_ANALYSER_INTEROP_h_
|
|
#define __FACE_ANALYSER_INTEROP_h_
|
|
|
|
#pragma once
|
|
|
|
// Include all the unmanaged things we need.
|
|
#pragma managed
|
|
|
|
#include <msclr\marshal.h>
|
|
#include <msclr\marshal_cppstd.h>
|
|
|
|
#pragma unmanaged
|
|
|
|
// Allows to overcome boost name clash stuff with C++ CLI
|
|
#ifdef __cplusplus_cli
|
|
#define generic __identifier(generic)
|
|
#endif
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
#include "opencv2/objdetect.hpp"
|
|
#include "opencv2/calib3d.hpp"
|
|
#include <opencv2/imgcodecs.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
#include <OpenCVWrappers.h>
|
|
#include <Face_utils.h>
|
|
#include <FaceAnalyser.h>
|
|
#include <VisualizationUtils.h>
|
|
|
|
// Boost stuff
|
|
#include <filesystem.hpp>
|
|
#include <filesystem/fstream.hpp>
|
|
|
|
#ifdef __cplusplus_cli
|
|
#undef generic
|
|
#endif
|
|
|
|
using namespace System::Collections::Generic;
|
|
|
|
#pragma managed
|
|
|
|
namespace FaceAnalyser_Interop {
|
|
|
|
public ref class FaceAnalyserManaged
|
|
{
|
|
|
|
private:
|
|
|
|
FaceAnalysis::FaceAnalyser* face_analyser;
|
|
|
|
// The actual descriptors (for visualisation and output)
|
|
cv::Mat_<float>* hog_features;
|
|
cv::Mat* aligned_face;
|
|
int* num_rows;
|
|
int* num_cols;
|
|
|
|
public:
|
|
|
|
FaceAnalyserManaged(System::String^ root, bool dynamic, int output_width)
|
|
{
|
|
string root_std = msclr::interop::marshal_as<std::string>(root);
|
|
FaceAnalysis::FaceAnalyserParameters params(root_std);
|
|
|
|
if (!dynamic)
|
|
{
|
|
params.OptimizeForImages();
|
|
}
|
|
|
|
params.setAlignedOutput(output_width);
|
|
face_analyser = new FaceAnalysis::FaceAnalyser(params);
|
|
|
|
hog_features = new cv::Mat_<float>();
|
|
|
|
aligned_face = new cv::Mat();
|
|
|
|
num_rows = new int;
|
|
num_cols = new int;
|
|
|
|
}
|
|
|
|
void PostProcessOutputFile(System::String^ file)
|
|
{
|
|
face_analyser->PostprocessOutputFile(msclr::interop::marshal_as<std::string>(file));
|
|
}
|
|
|
|
void AddNextFrame(OpenCVWrappers::RawImage^ frame, List<System::Tuple<double, double>^>^ landmarks, bool success, bool online) {
|
|
|
|
// Construct an OpenCV matric from the landmarks
|
|
cv::Mat_<double> landmarks_mat(landmarks->Count * 2, 1, 0.0);
|
|
for (int i = 0; i < landmarks->Count; ++i)
|
|
{
|
|
landmarks_mat.at<double>(i, 0) = landmarks[i]->Item1;
|
|
landmarks_mat.at<double>(i + landmarks->Count, 0) = landmarks[i]->Item2;
|
|
}
|
|
|
|
//(captured_image, face_model.detected_landmarks, face_model.detection_success, sequence_reader.time_stamp, sequence_reader.IsWebcam());
|
|
|
|
face_analyser->AddNextFrame(frame->Mat, landmarks_mat, success, 0, online);
|
|
|
|
cv::Mat_<double> hog_d;
|
|
face_analyser->GetLatestHOG(hog_d, *num_rows, *num_cols);
|
|
hog_d.convertTo(*hog_features, CV_64F);
|
|
|
|
face_analyser->GetLatestAlignedFace(*aligned_face);
|
|
|
|
}
|
|
|
|
// Predicting AUs from a single image
|
|
System::Tuple<Dictionary<System::String^, double>^, Dictionary<System::String^, double>^>^
|
|
PredictStaticAUsAndComputeFeatures(OpenCVWrappers::RawImage^ frame, List<System::Tuple<double, double>^>^ landmarks)
|
|
{
|
|
|
|
// Construct an OpenCV matric from the landmarks
|
|
cv::Mat_<double> landmarks_mat(landmarks->Count * 2, 1, 0.0);
|
|
for (int i = 0; i < landmarks->Count; ++i)
|
|
{
|
|
landmarks_mat.at<double>(i, 0) = landmarks[i]->Item1;
|
|
landmarks_mat.at<double>(i + landmarks->Count, 0) = landmarks[i]->Item2;
|
|
}
|
|
|
|
face_analyser->PredictStaticAUsAndComputeFeatures(frame->Mat, landmarks_mat);
|
|
|
|
// Set the computed appearance features
|
|
cv::Mat_<double> hog_tmp;
|
|
face_analyser->GetLatestHOG(hog_tmp, *num_rows, *num_cols);
|
|
hog_tmp.convertTo(*hog_features, CV_32F);
|
|
|
|
face_analyser->GetLatestAlignedFace(*aligned_face);
|
|
|
|
// Set the computed AUs
|
|
auto AU_predictions_intensity = face_analyser->GetCurrentAUsReg();
|
|
auto AU_predictions_occurence = face_analyser->GetCurrentAUsClass();
|
|
|
|
auto au_intensities = gcnew Dictionary<System::String^, double>();
|
|
auto au_occurences = gcnew Dictionary<System::String^, double>();
|
|
|
|
for (auto p : AU_predictions_intensity)
|
|
{
|
|
au_intensities->Add(gcnew System::String(p.first.c_str()), p.second);
|
|
}
|
|
|
|
for (auto p : AU_predictions_occurence)
|
|
{
|
|
au_occurences->Add(gcnew System::String(p.first.c_str()), p.second);
|
|
}
|
|
|
|
return gcnew System::Tuple<Dictionary<System::String^, double>^, Dictionary<System::String^, double>^>(au_intensities, au_occurences);
|
|
|
|
}
|
|
|
|
List<System::String^>^ GetClassActionUnitsNames()
|
|
{
|
|
auto names = face_analyser->GetAUClassNames();
|
|
|
|
auto names_ret = gcnew List<System::String^>();
|
|
|
|
for(std::string name : names)
|
|
{
|
|
names_ret->Add(gcnew System::String(name.c_str()));
|
|
}
|
|
|
|
return names_ret;
|
|
|
|
}
|
|
|
|
List<System::String^>^ GetRegActionUnitsNames()
|
|
{
|
|
auto names = face_analyser->GetAURegNames();
|
|
|
|
auto names_ret = gcnew List<System::String^>();
|
|
|
|
for(std::string name : names)
|
|
{
|
|
names_ret->Add(gcnew System::String(name.c_str()));
|
|
}
|
|
|
|
return names_ret;
|
|
|
|
}
|
|
|
|
Dictionary<System::String^, double>^ GetCurrentAUsClass()
|
|
{
|
|
auto classes = face_analyser->GetCurrentAUsClass();
|
|
auto au_classes = gcnew Dictionary<System::String^, double>();
|
|
|
|
for(auto p: classes)
|
|
{
|
|
au_classes->Add(gcnew System::String(p.first.c_str()), p.second);
|
|
}
|
|
return au_classes;
|
|
}
|
|
|
|
Dictionary<System::String^, double>^ GetCurrentAUsReg()
|
|
{
|
|
auto preds = face_analyser->GetCurrentAUsReg();
|
|
auto au_preds = gcnew Dictionary<System::String^, double>();
|
|
|
|
for(auto p: preds)
|
|
{
|
|
au_preds->Add(gcnew System::String(p.first.c_str()), p.second);
|
|
}
|
|
return au_preds;
|
|
}
|
|
|
|
OpenCVWrappers::RawImage^ GetLatestAlignedFace() {
|
|
OpenCVWrappers::RawImage^ face_aligned_image = gcnew OpenCVWrappers::RawImage(*aligned_face);
|
|
return face_aligned_image;
|
|
}
|
|
|
|
OpenCVWrappers::RawImage^ GetLatestHOGFeature() {
|
|
OpenCVWrappers::RawImage^ HOG_feature = gcnew OpenCVWrappers::RawImage(*hog_features);
|
|
return HOG_feature;
|
|
}
|
|
|
|
// As the number of HOG rows and columns might not be known in advance, have methods for querying them
|
|
int GetHOGRows()
|
|
{
|
|
return *num_rows;
|
|
}
|
|
|
|
int GetHOGCols()
|
|
{
|
|
return *num_cols;
|
|
}
|
|
|
|
// The number of channels is always the same
|
|
int GetHOGChannels()
|
|
{
|
|
return 31;
|
|
}
|
|
|
|
void Reset()
|
|
{
|
|
face_analyser->Reset();
|
|
}
|
|
|
|
// Finalizer. Definitely called before Garbage Collection,
|
|
// but not automatically called on explicit Dispose().
|
|
// May be called multiple times.
|
|
!FaceAnalyserManaged()
|
|
{
|
|
delete hog_features;
|
|
delete aligned_face;
|
|
delete num_cols;
|
|
delete num_rows;
|
|
delete face_analyser;
|
|
}
|
|
|
|
// Destructor. Called on explicit Dispose() only.
|
|
~FaceAnalyserManaged()
|
|
{
|
|
this->!FaceAnalyserManaged();
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
#endif |