305af01326
- Adding new license files - Replacing images with more suitable CC ones
208 lines
No EOL
7.1 KiB
Matlab
208 lines
No EOL
7.1 KiB
Matlab
clear
|
|
addpath('../PDM_helpers/');
|
|
addpath(genpath('../fitting/'));
|
|
addpath('../models/');
|
|
addpath(genpath('../face_detection'));
|
|
addpath('../CCNF/');
|
|
|
|
%%
|
|
vid_dir = '../../samples/';
|
|
vids = cat(1, dir([vid_dir, '*.avi']), dir([vid_dir, '*.wmv']));
|
|
|
|
%%
|
|
verbose = true;
|
|
record = true;
|
|
|
|
%% loading the patch experts
|
|
[clmParams, pdm] = Load_CLM_params_vid();
|
|
|
|
% An accurate CCNF (or CLNF) model
|
|
[patches] = Load_Patch_Experts( '../models/general/', 'ccnf_patches_*_general.mat', [], [], clmParams);
|
|
% A simpler (but less accurate SVR)
|
|
% [patches] = Load_Patch_Experts( '../models/wild/', 'svr_patches_*_wild.mat', [], [], clmParams);
|
|
|
|
% A general SVR
|
|
% [patches] = Load_Patch_Experts( '../models/general/', 'svr_patches_*_general.mat', [], [], clmParams);
|
|
|
|
clmParams.multi_modal_types = patches(1).multi_modal_types;
|
|
|
|
% load the face validator and add its dependency
|
|
load('../face_validation/trained/face_check_cnn_68.mat', 'face_check_cnns');
|
|
addpath(genpath('../face_validation'));
|
|
|
|
%%
|
|
for v=1:numel(vids)
|
|
% load the video
|
|
vr = VideoReader([vid_dir, vids(v).name]);
|
|
|
|
[~,fname,~] = fileparts(vids(v).name);
|
|
|
|
if(record)
|
|
if(~exist('./tracked_vids', 'file'))
|
|
mkdir('tracked_vids');
|
|
end
|
|
writerObj = VideoWriter(sprintf('./tracked_vids/%s.avi', fname));
|
|
open(writerObj);
|
|
end
|
|
|
|
det = false;
|
|
initialised = false;
|
|
|
|
nFrames = vr.NumberOfFrames;
|
|
% Read one frame at a time.
|
|
|
|
all_local_params = zeros(nFrames, numel(pdm.E));
|
|
all_global_params = zeros(nFrames,6);
|
|
|
|
for i = 1 : nFrames
|
|
|
|
% if this version throws a "Dot name reference on non-scalar structure"
|
|
% error change obj.NumberOfFrames to obj(1).NumberOfFrames (in two
|
|
% places in read function) or surround it with an empty try catch
|
|
% statement
|
|
image_orig = read(vr, i);
|
|
if((~det && mod(i,4) == 0) || ~initialised)
|
|
|
|
% First attempt to use the Matlab one (fastest but not as accurate, if not present use yu et al.)
|
|
[bboxs, det_shapes] = detect_faces(image_orig, {'cascade', 'yu'});
|
|
% Zhu and Ramanan and Yu et al. are slower, but also more accurate
|
|
% and can be used when vision toolbox is unavailable
|
|
% [bboxs, det_shapes] = detect_faces(image_orig, {'yu', 'zhu'});
|
|
|
|
if(~isempty(bboxs))
|
|
|
|
% Pick the biggest face for tracking
|
|
[~,ind] = max(bboxs(3,:) - bboxs(1,:));
|
|
bbox = bboxs(:,ind);
|
|
|
|
% Discard overly small detections
|
|
if(bbox(3) - bbox(1) > 40)
|
|
|
|
% Either infer the local and global shape parameters
|
|
% from the detected landmarks or just using the
|
|
% bounding box
|
|
if(~isempty(det_shapes))
|
|
shape = det_shapes(:,:,ind);
|
|
|
|
inds = [1:60,62:64,66:68];
|
|
M = pdm.M([inds, inds+68, inds+68*2]);
|
|
E = pdm.E;
|
|
V = pdm.V([inds, inds+68, inds+68*2],:);
|
|
[ a, R, T, ~, params, err] = fit_PDM_ortho_proj_to_2D(M, E, V, shape);
|
|
g_param_n = [a; Rot2Euler(R)'; T];
|
|
l_param_n = params;
|
|
else
|
|
|
|
num_points = numel(pdm.M) / 3;
|
|
|
|
M = reshape(pdm.M, num_points, 3);
|
|
width_model = max(M(:,1)) - min(M(:,1));
|
|
height_model = max(M(:,2)) - min(M(:,2));
|
|
|
|
a = (((bbox(3) - bbox(1)) / width_model) + ((bbox(4) - bbox(2))/ height_model)) / 2;
|
|
|
|
tx = (bbox(3) + bbox(1))/2;
|
|
ty = (bbox(4) + bbox(2))/2;
|
|
|
|
% correct it so that the bounding box is just around the minimum
|
|
% and maximum point in the initialised face
|
|
tx = tx - a*(min(M(:,1)) + max(M(:,1)))/2;
|
|
ty = ty + a*(min(M(:,2)) + max(M(:,2)))/2;
|
|
|
|
% visualisation
|
|
g_param_n = [a, 0, 0, 0, tx, ty]';
|
|
|
|
l_param_n = zeros(size(pdm.E));
|
|
end
|
|
|
|
% If tracking has not started trust the detection
|
|
if(~initialised)
|
|
g_param = g_param_n;
|
|
l_param = l_param_n;
|
|
det = true;
|
|
initialised = true;
|
|
else
|
|
% If tracking has already started double check the
|
|
% detection
|
|
shape_new = GetShapeOrtho(pdm.M, pdm.V, params, g_param_n);
|
|
|
|
dec = face_check_cnn(image, shape_new, g_param, face_check_cnns);
|
|
|
|
if(dec < 0.5)
|
|
det = true;
|
|
g_param = g_param_n;
|
|
l_param = l_param_n;
|
|
else
|
|
det = false;
|
|
end
|
|
end
|
|
|
|
end
|
|
end
|
|
end
|
|
if(size(image_orig,3) == 3)
|
|
image = rgb2gray(image_orig);
|
|
else
|
|
image = image_orig;
|
|
end
|
|
|
|
d_image = [];
|
|
|
|
if(initialised)
|
|
[shape,g_param,l_param,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, d_image, bbox, pdm, patches, clmParams, 'gparam', g_param, 'lparam', l_param);
|
|
all_local_params(i,:) = l_param;
|
|
all_global_params(i,:) = g_param;
|
|
|
|
dec = face_check_cnn(image, shape, g_param, face_check_cnns);
|
|
|
|
if(dec < 0.5)
|
|
clmParams.window_size = [19,19; 17,17;];
|
|
clmParams.numPatchIters = 2;
|
|
det = true;
|
|
else
|
|
clmParams.window_size = [21,21; 19,19; 17,17;];
|
|
clmParams.numPatchIters = 3;
|
|
det = false;
|
|
end
|
|
end
|
|
|
|
if(verbose)
|
|
|
|
try
|
|
if(max(image_orig(:)) > 1)
|
|
imshow(double(image_orig)/255, 'Border', 'tight');
|
|
else
|
|
imshow(double(image_orig), 'Border', 'tight');
|
|
end
|
|
axis equal;
|
|
hold on;
|
|
|
|
if(initialised)
|
|
plot(shape(:,1), shape(:,2),'.r','MarkerSize',20);
|
|
plot(shape(:,1), shape(:,2),'.b','MarkerSize',10);
|
|
end
|
|
hold off;
|
|
drawnow expose;
|
|
pause(0.05);
|
|
|
|
if(record)
|
|
frame = getframe;
|
|
writeVideo(writerObj,frame);
|
|
end
|
|
|
|
catch warn
|
|
fprintf('%s', warn.message);
|
|
end
|
|
end
|
|
|
|
end
|
|
if(record)
|
|
close(writerObj);
|
|
end
|
|
|
|
close all;
|
|
|
|
experiments.local_params = all_local_params;
|
|
experiments.global_params = all_global_params;
|
|
|
|
end |