sustaining_gazes/lib/local/LandmarkDetector/include/LandmarkDetectorModel.h
2016-04-28 15:40:36 -04:00

235 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __LANDMARK_DETECTOR_MODEL_h_
#define __LANDMARK_DETECTOR_MODEL_h_
// OpenCV dependencies
#include <opencv2/core/core.hpp>
#include <opencv2/objdetect.hpp>
// dlib dependencies for face detection
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/opencv.h>
#include "PDM.h"
#include "Patch_experts.h"
#include "LandmarkDetectionValidator.h"
#include "LandmarkDetectorParameters.h"
using namespace std;
namespace LandmarkDetector
{
// A main class containing all the modules required for landmark detection
// Face shape model
// Patch experts
// Optimization techniques
class CLNF{
public:
//===========================================================================
// Member variables that contain the model description
// The linear 3D Point Distribution Model
PDM pdm;
// The set of patch experts
Patch_experts patch_experts;
// The local and global parameters describing the current model instance (current landmark detections)
// Local parameters describing the non-rigid shape
cv::Mat_<double> params_local;
// Global parameters describing the rigid shape [scale, euler_x, euler_y, euler_z, tx, ty]
cv::Vec6d params_global;
// A collection of hierarchical CLNF models that can be used for refinement
vector<CLNF> hierarchical_models;
vector<string> hierarchical_model_names;
vector<vector<pair<int,int>>> hierarchical_mapping;
vector<FaceModelParameters> hierarchical_params;
//==================== Helpers for face detection and landmark detection validation =========================================
// Haar cascade classifier for face detection
cv::CascadeClassifier face_detector_HAAR;
string face_detector_location;
// A HOG SVM-struct based face detector
dlib::frontal_face_detector face_detector_HOG;
// Validate if the detected landmarks are correct using an SVR regressor
DetectionValidator landmark_validator;
// Indicating if landmark detection succeeded (based on SVR validator)
bool detection_success;
// Indicating if the tracking has been initialised (for video based tracking)
bool tracking_initialised;
// The actual output of the regressor (-1 is perfect detection 1 is worst detection)
double detection_certainty;
// Indicator if eye model is there for eye detection
bool eye_model = false;
// the triangulation per each view (for drawing purposes only)
vector<cv::Mat_<int> > triangulations;
//===========================================================================
// Member variables that retain the state of the tracking (reflecting the state of the lastly tracked (detected) image
// Lastly detect 2D model shape [x1,x2,...xn,y1,...yn]
cv::Mat_<double> detected_landmarks;
// The landmark detection likelihoods (combined and per patch expert)
double model_likelihood;
cv::Mat_<double> landmark_likelihoods;
// Keeping track of how many frames the tracker has failed in so far when tracking in videos
// This is useful for knowing when to initialise and reinitialise tracking
int failures_in_a_row;
// A template of a face that last succeeded with tracking (useful for large motions in video)
cv::Mat_<uchar> face_template;
// Useful when resetting or initialising the model closer to a specific location (when multiple faces are present)
cv::Point_<double> preference_det;
// A default constructor
CLNF();
// Constructor from a model file
CLNF(string fname);
// Copy constructor (makes a deep copy of the detector)
CLNF(const CLNF& other);
// Assignment operator for lvalues (makes a deep copy of the detector)
CLNF & operator= (const CLNF& other);
// Empty Destructor as the memory of every object will be managed by the corresponding libraries (no pointers)
~CLNF(){}
// Move constructor
CLNF(const CLNF&& other);
// Assignment operator for rvalues
CLNF & operator= (const CLNF&& other);
// Does the actual work - landmark detection
bool DetectLandmarks(const cv::Mat_<uchar> &image, const cv::Mat_<float> &depth, FaceModelParameters& params);
// Gets the shape of the current detected landmarks in camera space (given camera calibration)
// Can only be called after a call to DetectLandmarksInVideo or DetectLandmarksInImage
cv::Mat_<double> GetShape(double fx, double fy, double cx, double cy) const;
// A utility bounding box function
cv::Rect_<double> GetBoundingBox() const;
// Reset the model (useful if we want to completelly reinitialise, or we want to track another video)
void Reset();
// Reset the model, choosing the face nearest (x,y) where x and y are between 0 and 1.
void Reset(double x, double y);
// Reading the model in
void Read(string name);
// Helper reading function
void Read_CLNF(string clnf_location);
private:
// the speedup of RLMS using precalculated KDE responses (described in Saragih 2011 RLMS paper)
map<int, cv::Mat_<float> > kde_resp_precalc;
// The model fitting: patch response computation and optimisation steps
bool Fit(const cv::Mat_<uchar>& intensity_image, const cv::Mat_<float>& depth_image, const std::vector<int>& window_sizes, const FaceModelParameters& parameters);
// Mean shift computation that uses precalculated kernel density estimators (the one actually used)
void NonVectorisedMeanShift_precalc_kde(cv::Mat_<float>& out_mean_shifts, const vector<cv::Mat_<float> >& patch_expert_responses, const cv::Mat_<float> &dxs, const cv::Mat_<float> &dys, int resp_size, float a, int scale, int view_id, map<int, cv::Mat_<float> >& mean_shifts);
// The actual model optimisation (update step), returns the model likelihood
double NU_RLMS(cv::Vec6d& final_global, cv::Mat_<double>& final_local, const vector<cv::Mat_<float> >& patch_expert_responses, const cv::Vec6d& initial_global, const cv::Mat_<double>& initial_local,
const cv::Mat_<double>& base_shape, const cv::Matx22d& sim_img_to_ref, const cv::Matx22f& sim_ref_to_img, int resp_size, int view_idx, bool rigid, int scale, cv::Mat_<double>& landmark_lhoods, const FaceModelParameters& parameters);
// Removing background image from the depth
bool RemoveBackground(cv::Mat_<float>& out_depth_image, const cv::Mat_<float>& depth_image);
// Generating the weight matrix for the Weighted least squares
void GetWeightMatrix(cv::Mat_<float>& WeightMatrix, int scale, int view_id, const FaceModelParameters& parameters);
//=======================================================
// Legacy functions that are not used at the moment
//=======================================================
// Mean shift computation
void NonVectorisedMeanShift(cv::Mat_<double>& out_mean_shifts, const vector<cv::Mat_<float> >& patch_expert_responses, const cv::Mat_<double> &dxs, const cv::Mat_<double> &dys, int resp_size, double a, int scale, int view_id);
// A vectorised version of mean shift (Not actually used)
void VectorisedMeanShift(cv::Mat_<double>& meanShifts, const vector<cv::Mat_<float> >& patch_expert_responses, const cv::Mat_<double> &iis, const cv::Mat_<double> &jjs, const cv::Mat_<double> &dxs, const cv::Mat_<double> &dys, const cv::Size patchSize, double sigma, int scale, int view_id);
};
//===========================================================================
}
#endif