sustaining_gazes/lib/local/CamCom/comet/registry.h
2016-05-20 16:48:43 -04:00

1302 lines
43 KiB
C++

/** \file
* Windows Registry iteration and manipulation functions.
*/
/*
* Copyright © 2000, 2001 Paul Hollingsworth
*
* This material is provided "as is", with absolutely no warranty
* expressed or implied. Any use is at your own risk. Permission to
* use or copy this software for any purpose is hereby granted without
* fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*
* This header is part of Comet version 2.
* https://github.com/alamaison/comet
*/
#ifndef COMET_REGISTRY_H
#define COMET_REGISTRY_H
#include <windows.h>
#include <comet/reference_count.h>
#include <comet/assert.h>
#include <comet/tstring.h>
#ifdef __BORLANDC__
#define COMET_ITERATOR_VOID(tag) std::iterator<tag, void, void, void *, void >
#else
#ifndef __SGI_STL
#ifdef __MINGW32__
#define COMET_ITERATOR_VOID(tag) std::forward_iterator<tag, void>
#else
#ifdef _CPPLIB_VER
#define COMET_ITERATOR_VOID(tag) std::iterator<tag, void, void, void, void>
#else
#define COMET_ITERATOR_VOID(tag) std::iterator<tag, void, void>
#endif
#endif
#else
#define COMET_ITERATOR_VOID(tag) std::iterator<tag, void, void, void, void>
#endif
#endif
namespace comet {
/** Contains implementation of registry classes.
*/
namespace registry {
/// Unicode compatible string class used in registry operations.
// typedef std::basic_string<TCHAR> tstring;
namespace impl {
// Only when an iterator is dereferenced
// do we want to go about reading the value
// from the registry. This requires us to create
// a temporary object. But in order to overload
// operator->, our temporary object must overload
// operator-> - and often it doesn't.
// Proxy is here to effectively overload operator-> for the temporary
// object.
template<typename T>
class proxy
{
T t_;
public:
proxy(const T &t) : t_(t) {}
T *operator->()
{
return &t_;
}
const T *operator->() const
{
return &t_;
}
};
class key_base
{
HKEY key_;
mutable reference_count rc_;
static bool valid_key_(HKEY key) {
return key != 0;
}
void close_() {
if(valid_key_(key_) && (--rc_ == 0)) {
LONG errcode = ::RegCloseKey(key_);
COMET_ASSERT(ERROR_SUCCESS == errcode);
/* C4189 */ errcode;
}
key_ = 0; // invalidate key handle
}
public:
key_base(const key_base &rhs)
: key_(rhs.key_) {
if(valid_key_(key_))
++rhs.rc_;
rc_ = rhs.rc_;
}
key_base(HKEY key = 0) : key_(key) {
}
~key_base() throw() {
close_();
}
key_base &operator=(const key_base &rhs)
{
key_base tmp(rhs);
swap(tmp);
return *this;
}
void swap(key_base &rhs) throw() {
std::swap(key_, rhs.key_);
std::swap(rc_, rhs.rc_);
}
LONG open(const tstring &subkey,
REGSAM sam_desired,
HKEY *childkey) const {
*childkey = 0;
return ::RegOpenKeyEx(key_,
subkey.c_str(),
0,
sam_desired,
childkey);
}
HKEY open_nothrow(const tstring &subkey,
REGSAM sam_desired,
LONG *errcode) const {
HKEY childkey_ = 0;
LONG errcode_ = open(subkey,
sam_desired,
&childkey_);
if(errcode) *errcode = errcode_;
return childkey_;
}
LONG create(const tstring &subkey,
DWORD options,
REGSAM sam_desired,
LPSECURITY_ATTRIBUTES security_attributes,
LPDWORD disposition,
HKEY *childkey) const {
return ::RegCreateKeyEx(key_,
subkey.c_str(),
0,
REG_NONE,
options,
sam_desired,
security_attributes,
childkey,
disposition);
}
HKEY create_nothrow(const tstring &subkey,
DWORD options,
REGSAM sam_desired,
LPSECURITY_ATTRIBUTES security_attributes,
LPDWORD disposition,
LONG *errcode) const {
HKEY childkey = 0;
LONG errcode_ = create(subkey,
options,
sam_desired,
security_attributes,
disposition,
&childkey);
if(errcode) *errcode = errcode_;
return childkey;
}
LONG flush_nothrow() const {
return ::RegFlushKey(key_);
}
LONG delete_subkey_nothrow(const tstring &subkey) const {
return ::RegDeleteKey(key_, subkey.c_str());
}
LONG delete_value_nothrow(const tstring &value_name) const {
return ::RegDeleteValue(key_, value_name.c_str());
}
void close() {
close_();
}
HKEY get() const {
return key_;
}
bool is_valid() const throw()
{
return key_ ? true : false;
}
operator const void *() const throw()
{
return is_valid() ? this : 0;
}
}; // class key_base
// Enumerating through keys or values is
// very similar. These two class encapsulate
// all that is different between the two algorithms.
struct next_value
{
static LONG perform(HKEY key,
DWORD dwIndex,
LPTSTR lpName,
LPDWORD lpcName)
{
return ::RegEnumValue(key, dwIndex, lpName, lpcName, 0, 0, 0, 0);
}
};
struct next_key
{
static LONG perform(HKEY key,
DWORD dwIndex,
LPTSTR lpName,
LPDWORD lpcName)
{
return ::RegEnumKeyEx(key, dwIndex, lpName, lpcName, 0, 0, 0, 0);
}
};
} // namespace impl
/** \struct name_iterator registry.h comet/registry.h
* Iterates through a list of names. The names might be either key
* names or value names, depending on get_next.
*/
template<class error_policy, class get_next>
struct name_iterator : public COMET_ITERATOR_VOID(std::forward_iterator_tag)
{
// key_ is the only assignment that can fail. So
// we make it the first member, so that
// default assignment is exception safe.
impl::key_base key_;
DWORD index_;
DWORD buf_size_;
DWORD num_values_;
static void check_exception_(LONG errcode)
{
if(ERROR_SUCCESS != errcode)
error_policy::on_error(errcode);
}
// Is this iterator an end iterator?
bool is_end() const
{
return key_ ? false : true;
}
// Make this iterator an end
// iterator
void make_end()
{
key_.close();
}
public:
typedef tstring value_type;
name_iterator(const impl::key_base &key,
DWORD num_values,
DWORD buf_size)
: key_(key),
num_values_(num_values),
buf_size_(buf_size),
index_(0)
{
if(0 == num_values)
make_end();
}
void swap(name_iterator &rhs)
{
key_.swap(rhs.key_);
std::swap(index_, rhs.index_);
std::swap(buf_size_, rhs.buf_size_);
std::swap(num_values_, rhs.num_values_);
}
name_iterator &operator=(const name_iterator &rhs)
{
key_ = rhs.key_;
index_ = rhs.index_;
buf_size_ = rhs.buf_size_;
num_values_ = rhs.num_values_;
return *this;
}
impl::key_base key() const
{
return key_;
}
name_iterator()
{
make_end();
}
value_type operator*() const
{
tstring::value_type *buf = static_cast<tstring::value_type *>(_alloca(buf_size_));
DWORD dummy = buf_size_;
check_exception_(get_next::perform(key_.get(),
index_,
buf,
&dummy));
return buf;
}
impl::proxy<value_type> operator->() const
{
return **this;
}
name_iterator &operator++()
{
++index_;
if(index_ == num_values_)
make_end();
return *this;
}
name_iterator operator++(int) const
{
name_iterator retval = *this;
++(*this);
return retval;
}
bool operator==(const name_iterator &rhs) const
{
if(is_end()) return rhs.is_end();
if(rhs.is_end()) return is_end();
return index_ == rhs.index_;
}
bool operator!=(const name_iterator &rhs) const
{
return !(*this == rhs);
}
};
/** \class value registry.h comet/registry.h
* A pseudo-reference to a value in the registry.
* Assign to instances of this object to make changes to the corresponding registry value
* Read from this object to read values from the registry.
*/
template<class error_policy>
class value
{
impl::key_base key_;
tstring value_name_;
static void check_exception_(LONG errcode)
{
if(ERROR_SUCCESS != errcode)
error_policy::on_error(errcode);
}
static void type_mismatch()
{
error_policy::on_typemismatch();
}
LONG get_value_(DWORD *type,
BYTE *buffer,
DWORD *number_bytes) const
{
return ::RegQueryValueEx(key_.get(),
value_name_.c_str(),
0,
type,
buffer,
number_bytes);
}
void get_value(DWORD *type,
BYTE *buffer,
DWORD *number_bytes) const {
check_exception_(
get_value_(type,
buffer,
number_bytes)
);
}
LONG set_value_(DWORD type,
const BYTE *data,
DWORD number_bytes)
{
return ::RegSetValueEx(key_.get(),
value_name_.c_str(),
0,
type,
data,
number_bytes);
}
void set_value(DWORD type,
const BYTE *data,
DWORD number_bytes)
{
check_exception_(
set_value_(type,
data,
number_bytes));
}
tstring name() const
{
return value_name_;
}
public:
//! This can be used to query if a value exists.
/*!
For example:
\code
string get_thread_model(const regkey &clsid_key)
{
regkey::value_type t = clsid_key.open("InprocServer32", KEY_READ)["ThreadingModel"];
if(t.exists())
return t.str();
else
return "Single";
}
\endcode
*/
bool exists() const
{
return ERROR_SUCCESS == get_value_(0, 0, 0);
}
value(const impl::key_base &key,
const tstring &value_name)
: key_(key),
value_name_(value_name)
{
}
//! Non throwing swap
/*! This is for efficiency only.
operator= is overloaded to have a different
meaning (copying one part of the
registry to another part of the registry).
*/
void swap(value &rhs)
{
key_.swap(rhs.key_);
value_name_.swap(rhs.value_name_);
}
//! Get a value of any type. The arguments are passed directly to RegQueryValueEx
/*!
\param type Pointer to the type - can be 0
\param buffer Pointer to a buffer - can be 0
\param number_bytes Indicates size of the buffer - can be 0 if buffer is 0
*/
void get(DWORD *type,
BYTE *buffer,
DWORD *number_bytes) const
{
get_value(type,
buffer,
number_bytes);
}
//! Get a value - return errcode
/*!
\param type Pointer to the type - can be 0
\param buffer Pointer to a buffer - can be 0
\param number_bytes Indicates size of the buffer - can be 0 if buffer is 0
*/
LONG get_nothrow(DWORD *type,
BYTE *buffer,
DWORD *number_bytes) const
{
return get_value_(type, buffer, number_bytes);
}
//! Set a value arbitrarily. The arguments are passed directly to RegSetValueEx
/*!
\param type Type to set it to (e.g. REG_SZ)
\param buffer Pointer to a buffer
\param number_bytes Indicates size of the buffer
*/
void set(DWORD type,
const BYTE *buffer,
DWORD number_bytes)
{
set_value(type,
buffer,
number_bytes);
}
//! Set a value - return errcode
/*!
\param type Type to set it to (e.g. REG_SZ)
\param buffer Pointer to a buffer
\param number_bytes Indicates size of the buffer
*/
LONG set_nothrow(DWORD type,
const BYTE *buffer,
DWORD number_bytes)
{
return set_value_(type, buffer, number_bytes);
}
//! Interpret value as a string
/*!
\exception com_error If the type is not REG_SZ or REG_EXPAND_SZ (using standard error_policy)
*/
tstring str() const
{
DWORD number_bytes = 0;
DWORD type;
get_value(&type,
0,
&number_bytes);
if( (REG_SZ != type) && (REG_EXPAND_SZ != type))
type_mismatch();
BYTE *buffer = static_cast<BYTE *>(_alloca(number_bytes));
get_value(0,
buffer,
&number_bytes);
return tstring(reinterpret_cast<const tstring::value_type *>(buffer),
(number_bytes/sizeof(tstring::value_type)) - 1);
}
tstring str(const tstring& default_val) const
{
DWORD number_bytes = 0;
DWORD type;
if (get_value_(&type,
0,
&number_bytes) != ERROR_SUCCESS) return default_val;
if( (REG_SZ != type) && (REG_EXPAND_SZ != type))
type_mismatch();
BYTE *buffer = static_cast<BYTE *>(_alloca(number_bytes));
get_value(0,
buffer,
&number_bytes);
return tstring(reinterpret_cast<const tstring::value_type *>(buffer),
(number_bytes/sizeof(tstring::value_type)) - 1);
}
//! Implicit conversion to string.
operator tstring() const
{
return str();
}
//! Implicit conversion to unsigned int
operator DWORD() const
{
return dword();
}
//! Interpret value as a DWORD
/*!
\exception com_error If the type is not REG_DWORD or REG_DWORD_LITTLE_ENDIAN (using standard error_policy)
*/
DWORD dword() const
{
DWORD number_bytes = sizeof( DWORD );
DWORD type;
DWORD retval;
get_value(&type,
reinterpret_cast<BYTE *>(&retval),
&number_bytes);
if( (REG_DWORD != type) && (REG_DWORD_LITTLE_ENDIAN != type) )
type_mismatch();
return retval;
}
DWORD dword(DWORD default_val) const
{
DWORD number_bytes = sizeof( DWORD );
DWORD type;
DWORD retval;
if (get_value_(&type,
reinterpret_cast<BYTE *>(&retval),
&number_bytes) != ERROR_SUCCESS) return default_val;
if( (REG_DWORD != type) && (REG_DWORD_LITTLE_ENDIAN != type) )
type_mismatch();
return retval;
}
// These two operators are currently useless
// because VC++ 6.0 appears to have a bug -
// it claims that no conversion to pair<string,string>
// exists even though it clearly does here.
// However, it's possible these would be
// useful on other compilers (or future compilers).
operator std::pair<tstring, tstring>() const
{
return std::make_pair(name(), str());
}
operator std::pair<tstring, DWORD>() const
{
return std::make_pair(name(), dword());
}
//! Assign a string value and set the type to REG_SZ
value &operator=(const tstring &rhs)
{
set_value(REG_SZ,
reinterpret_cast<const BYTE *>(rhs.c_str()),
(rhs.length() + 1) * sizeof ( tstring::value_type));
return *this;
}
//! Assign a DWORD value and set the type to REG_DWORD
value &operator=(const DWORD &rhs)
{
set_value(REG_DWORD,
reinterpret_cast<const BYTE *>(&rhs),
sizeof (DWORD) );
return *this;
}
//! Assign an integer value - sets type to REG_DWORD
value &operator=(int rhs)
{
return *this = DWORD(rhs);
}
//! Assign value from another registry value
/*!
Because value objects always refer to a part of the registry,
this effectively copies a registry value
from somewhere else in the registry.
*/
value &operator=(const value &rhs)
{
DWORD type;
DWORD size;
rhs.get_value(&type,
0,
&size);
BYTE *buffer = static_cast<BYTE *>(_alloca(size));
rhs.get_value_(0,
buffer,
&size);
set_value(type,
buffer,
size);
return *this;
}
}; // class value
/** \class const_value_iterator registry.h comet/registry.h
* Forward const iterator over registry values.
*/
template<typename error_policy>
class const_value_iterator : public COMET_ITERATOR_VOID(std::forward_iterator_tag)
{
typedef const value<error_policy> second_type;
typedef std::pair<const tstring, second_type > value_type_;
value_type_ get_value() const
{
tstring name = *index_;
return std::make_pair(name, second_type(index_.key(), name) );
}
protected:
name_iterator<error_policy, impl::next_value> index_;
public:
typedef value_type_ value_type;
const_value_iterator(const impl::key_base &key,
DWORD num_values,
DWORD buf_size)
: index_(key, num_values, buf_size)
{
}
const_value_iterator() {}
void swap(const_value_iterator &rhs)
{
index_.swap(rhs.index_);
}
value_type operator*() const
{
return get_value();
}
const_value_iterator &operator++()
{
++index_;
return *this;
}
const_value_iterator operator++(int)
{
const_value_iterator retval(*this);
++(*this);
return retval;
}
impl::proxy<value_type> operator->()
{
return **this;
}
bool operator==(const const_value_iterator &rhs) const
{
return index_ == rhs.index_;
}
bool operator!=(const const_value_iterator &rhs) const
{
return index_ != rhs.index_;
}
};
/** \class value_iterator registry.h comet/registry.h
* Forward iterator over registry values.
*/
template<typename error_policy>
class value_iterator : public const_value_iterator<error_policy>
{
typedef value<error_policy> second_type;
typedef std::pair<const tstring, second_type> value_type_;
typedef const_value_iterator<error_policy> base;
value_type_ get_value() const
{
tstring name = *this->index_;
return std::make_pair(name, second_type(this->index_.key(), name) );
}
public:
typedef value_type_ value_type;
value_iterator(const impl::key_base &key,
DWORD num_values,
DWORD buf_size)
: base(key, num_values, buf_size) {}
value_iterator() {}
value_type operator*() const
{
return get_value();
}
value_iterator &operator++()
{
base::operator++();
return *this;
}
value_iterator operator++(int)
{
value_iterator retval(*this);
++(*this);
return retval;
}
impl::proxy<value_type> operator->()
{
return get_value();
}
bool operator==(const value_iterator &rhs) const
{
return this->index_ == rhs.index_;
}
bool operator!=(const value_iterator &rhs) const
{
return this->index_ != rhs.index_;
}
};
/** \struct collection registry.h comet/registry.h
* STL style container class for various types of registry based
* aggregations.
*/
template<typename error_policy,
typename iterator_,
typename const_iterator_ = iterator_>
struct collection
{
impl::key_base key_;
DWORD num_values_;
DWORD buf_size_;
public:
collection(const impl::key_base &key,
DWORD num_values,
DWORD buf_size)
: key_(key),
num_values_(num_values),
buf_size_(buf_size)
{
}
typedef iterator_ iterator;
typedef const_iterator_ const_iterator;
typedef typename iterator_::value_type value_type;
typedef size_t size_type;
//! Number of elements in the collection
size_type size() const { return num_values_; }
//! Exception safe swap
void swap(collection &rhs)
{
key_.swap(rhs.key_);
std::swap(num_values_, rhs.num_values_);
std::swap(buf_size_, rhs.buf_size_);
}
//! Get the first iterator
iterator begin()
{
return iterator(key_, num_values_, buf_size_);
}
//! Signature iterator marking the end of the sequence
iterator end()
{
return iterator();
}
const_iterator begin() const
{
return const_iterator(key_, num_values_, buf_size_);
}
const_iterator end() const
{
return const_iterator();
}
};
/** \class info registry.h comet/registry.h
* Structure returned by regkey.enumerate()
*/
template<typename error_policy>
class info
{
// Make key_ the first member - this
// ensures exception safe assignment.
impl::key_base key_;
// Number of values
DWORD num_values_;
// Maximum length of a value name
DWORD value_name_tchars_;
// Number of sub keys
DWORD num_subkeys_;
// Maximum length of a sub key name
DWORD subkey_name_tchars_;
static void check_exception_(LONG errcode)
{
if(ERROR_SUCCESS != errcode)
error_policy::on_error(errcode);
}
static DWORD bytes(DWORD tchars)
{
return (tchars + 1) * sizeof( tstring::value_type);
}
public:
info(const impl::key_base &key)
: key_(key)
{
check_exception_(::RegQueryInfoKey(key_.get(),
0, // lpClass - reserved
0, // lpcClass - reserved
0, // lpReserved
&num_subkeys_,
&subkey_name_tchars_,
0, // lpcMaxClassLen - I think this is also reserved
&num_values_,
&value_name_tchars_,
0, // lpcMaxValueLen - not necessary for us
0, // lpcbSecurityDescriptor
0)); // lpftLastWriteTime
}
//! Exception safe swap
void swap(info &rhs)
{
key_.swap(rhs.key_);
std::swap(num_subkeys_, rhs.num_subkeys_);
std::swap(subkey_name_tchars_, rhs.subkey_name_tchars_);
std::swap(value_name_tchars_, rhs.value_name_tchars_);
std::swap(num_values_, rhs.num_values_);
}
//! Type returned by values()
typedef collection<error_policy, value_iterator<error_policy>, const_value_iterator<error_policy> > values_type;
//! Type returned by value_names()
typedef collection<error_policy, name_iterator<error_policy, impl::next_value> > value_names_type;
//! Type returned by subkeys()
typedef collection<error_policy, name_iterator<error_policy, impl::next_key> > subkeys_type;
//! Number of values under this key (excluding the default value)
size_t num_values() const
{
return num_values_;
}
//! Number of subkeys under this key
size_t num_subkeys() const
{
return num_subkeys_;
}
//! Length of the longest value_name under this key (in TCHARs)
size_t max_value_name() const
{
return value_name_tchars_;
}
//! Length of the longest subkey name under this key (in TCHARs)
size_t max_subkey_name() const
{
return subkey_name_tchars_;
}
//! Return the collection of values
/*!
The value_type of the collection is std::pair<const std::basic_string<TCHAR>, regkey::mapped_type>
regkey::mapped_type has implicit conversions to unsigned int and std::basic_string however.
Example - copy all value-name/value pairs into a map
\code
typedef std::basic_string<TCHAR> tstring;
regkey::info_type info(regkey(HKEY_LOCAL_MACHINE).enumerate());
map<tstring, regkey::mapped_type> values_map;
copy(info.values().begin(), info.values().end(), inserter(values_map, values_map.end()));
\endcode
Example - copy all value-name/value pairs into a string map - exception will
be thrown if a non string value is encountered.
\code
typedef std::basic_string<TCHAR> tstring;
regkey::info_type info(regkey(HKEY_LOCAL_MACHINE).enumerate());
map<bstr_t, bstr_t> values_map;
copy(info.values().begin(), info.values().end(), inserter(values_map, values_map.end()));
\endcode
Example - copy all value-name/value pairs into a string/int map - exception will
be thrown if a non string value is encountered.
\code
typedef std::basic_string<TCHAR> tstring;
regkey::info_type info(regkey(HKEY_LOCAL_MACHINE).enumerate());
map<bstr_t, int> values_map;
copy(info.values().begin(), info.values().end(), inserter(values_map, values_map.end()));
\endcode
*/
values_type values() const
{
return values_type(key_, num_values_, bytes(value_name_tchars_));
}
//! Returns the collection of value names
/*! The value_type of the collection is std::basic_string<TCHAR>.
Example - copy all value names of HKEY_LOCAL_MACHINE into a list
\code
regkey::info_type info(regkey(HKEY_LOCAL_MACHINE).enumerate());
vector<string> value_names;
copy(info.value_names().begin(), info.value_names().end(), back_inserter(value_names));
\endcode
*/
value_names_type value_names() const
{
return value_names_type(key_, num_values_, bytes(value_name_tchars_));
}
//! Returns the collection of subkey names
/*! The value_type of the collection is std::basic_string<TCHAR>.
Example - copy all subkeys of HKEY_LOCAL_MACHINE into a list
\code
regkey::info_type info(regkey(HKEY_LOCAL_MACHINE).enumerate());
vector<string> subkey_names;
copy(info.subkeys().begin(), info.subkeys().end(), back_inserter(subkey_names));
\endcode
*/
subkeys_type subkeys() const
{
return subkeys_type(key_, num_subkeys_, bytes(subkey_name_tchars_));
}
};
#ifdef __BORLANDC__
using impl::key_base;
#endif
/** \class key registry.h comet/registry.h
* Registry key wrapper.
Because an HKEY cannot be duplicated in a platform independent way,
reference counting is used to enable copying of key objects.
Methods with the _nothrow suffix do not throw exceptions other than
std::bad_alloc.
Key instances can be used as output iterators for std::pair
assignments. The second argument of each pair must be assignable to
an instance of regkey::mapped_type. Currently, this means that the
second member of each pair must be convertable to either an int,
unsigned int, or std::basic_string<TCHAR>.
Example:
\code
regkey the_key = regkey(HKEY_LOCAL_MACHINE).open("Software\\Comet");
map<string,string> names;
names["one"] = "one";
names["two"] = "two";
copy(names.begin(), names.end(), the_key);
map<string,int> values;
values["three"] = 3;
values["four"] = 4;
copy(values.begin(), values.end(), the_key);
\endcode
*/
template<class error_policy>
class key : private impl::key_base {
private:
static void check_exception_(LONG errcode)
{
if(ERROR_SUCCESS != errcode)
error_policy::on_error(errcode);
}
public:
key(HKEY key_handle = 0) : key_base(key_handle) {}
//! Copy a key.
/*! In reality this
only increments a reference count.
We have to use reference counting
because ::DuplicateHandle does not
work for registry keys on windows 95/98.
*/
key(const key &rhs)
: key_base(rhs) {
}
//! Copy a key.
/*! This is useful for attaching to keys from a name iterator.
*/
key( const impl::key_base &rhs)
: key_base(rhs) {
}
void swap(key &rhs)
{
key_base::swap(rhs);
}
//! Operator overload to allow you to put key instances in a conditional.
/*! This operator allows you to write code like this:
\code
if(subkey = key(HKEY_LOCAL_MACHINE).open_nothrow(_T("Software")))
{
...
};
\endcode
const void * is used instead of the more obvious "bool" to disable
implicit conversions to int and the like.
Example:
\code
int success = key(HKEY_LOCAL_MACHINE).open_nothrow(_T("Software")); // Won't compile fortunately!!
\endcode
*/
operator const void *() const throw()
{
return is_valid() ? this : 0;
}
//! Open a subkey
key open(const tstring &subkey,
REGSAM sam_desired = KEY_ALL_ACCESS) const {
HKEY childkey_ = 0;
check_exception_(
key_base::open(subkey,
sam_desired,
&childkey_)
);
return childkey_;
}
//! Open a subkey, no exceptions
key open_nothrow(const tstring &subkey,
REGSAM sam_desired = KEY_ALL_ACCESS,
LONG *errcode = 0) const {
return key_base::open_nothrow(subkey,
sam_desired, errcode);
}
//! Create a subkey
key create(const tstring &subkey,
DWORD options = REG_OPTION_NON_VOLATILE,
REGSAM sam_desired = KEY_ALL_ACCESS,
LPSECURITY_ATTRIBUTES security_attributes = 0,
LPDWORD disposition = 0) const {
HKEY childkey_ = 0;
check_exception_(
key_base::create(subkey,
options,
sam_desired,
security_attributes,
disposition,
&childkey_)
);
return childkey_;
}
//! Create a subkey - no exceptions
key create_nothrow(const tstring &subkey,
DWORD options = REG_OPTION_NON_VOLATILE,
REGSAM sam_desired = KEY_ALL_ACCESS,
LPSECURITY_ATTRIBUTES security_attributes = 0,
LPDWORD disposition = 0,
LONG *errcode = 0) const {
return key_base::create_nothrow(subkey,
options,
sam_desired,
security_attributes,
disposition,
errcode);
}
//! Call RegFlushKey with the contained key
void flush() const {
check_exception_(
flush_nothrow()
);
}
//! Call RegFlushKey with the contained key - no exceptions
LONG flush_nothrow() const {
return key_base::flush_nothrow();
}
//! Delete the subkey
/*! Warning - the behaviour is different
between WinNT and Win95/98 if
sub keys are present.
See documentation for ::RegDeleteKey for
more information.
*/
void delete_subkey(const tstring &subkey) const {
check_exception_(
delete_subkey_nothrow(subkey.c_str())
);
}
//! Delete the subkey
/*! Warning - the behaviour is different
between WinNT and Win95/98 if
sub keys are present.
See documentation for ::RegDeleteKey for
more information.
*/
LONG delete_subkey_nothrow(const tstring &subkey) const {
return key_base::delete_subkey_nothrow(subkey);
}
//! delete a value
void delete_value(const tstring &value_name) const {
check_exception_(
delete_value_nothrow(value_name)
);
}
//! delete a value - no exceptions
LONG delete_value_nothrow(const tstring &value_name) const {
return key_base::delete_value_nothrow(value_name);
}
//! Release reference to the key.
/*! Note that this will only call ::RegCloseKey
if this was the last reference to the outstanding key.
This method is implicitly called by the destructor.
*/
void close() {
key_base::close();
}
//! Get access to the raw key without releasing ownership
HKEY get() const {
return key_base::get();
}
typedef value<error_policy> mapped_type;
// All of these methods are const because I figured
// it was more useful. It allows you to create
// temporary regkey objects for the purposes of
// updating.
//! Get a reference to a value in the registry.
/*! The returned value can be used on both sides of an assignment. Example:
\code
key.get_value("Name") = "Paul";
string name = key.get_value("Name");
cout << key.get_value("Name").str() << endl;
\endcode
*/
mapped_type get_value(const tstring &value_name = _T("")) const
{
return mapped_type(*this, value_name);
}
//! Subscript operator overload - syntactic sugar for get_value().
/*! Example:
\code
key["Name"] = "Paul";
string name = key["Name"];
cout << key["Name"].str() << endl;
\endcode
*/
mapped_type operator[](const tstring &value_name) const
{
return get_value(value_name);
}
//! Type returned by enumerate()
typedef info<error_policy> info_type;
//! Type returned by enumerate().subkeys()
typedef typename info_type::subkeys_type subkeys_type;
//! Type returned by enumerate().values()
typedef typename info_type::values_type values_type;
//! Type returned by enumerate().value_names()
typedef typename info_type::value_names_type value_names_type;
//! Enumerate the subkeys, values or value_names, or obtain other information about the key. See also info.
/*!
The enumerate() method effectively calls RegQueryInfoKey, so you should
minimize the number of calls to enumerate() if efficiency is
a concern. e.g.
The following
\code
regkey::info_type info = key.enumerate();
copy(info.values().begin(), info.values().end(), inserter(value_map, value_map.end()));
\endcode
is more efficient than
\code
copy(key.enumerate().values().begin(), key.enumerate().values().end(), inserter(value_map, value_map.end()));
\endcode
The second version will end up calling RegQueryInfoKey twice.
*/
info_type enumerate() const
{
return info_type(*this);
}
//! Part of making key into an output iterator
key &operator*()
{
return *this;
}
//! Assignment. This is designed to work with 'std::pair's - the value type of map classes
template<typename T>
key &operator=(const T &val)
{
get_value(val.first) = val.second;
return *this;
}
//! Exception safe assignment operator.
//! Can still throw std::bad_alloc due
//! to reference counting.
//template<>
key &operator=(const key &rhs)
{
key_base::operator=(rhs);
return *this;
}
//! Noop increment
key &operator++() { return *this; }
//! Noop decrement
key &operator++(int) { return *this; }
}; // class key
} // namespace registry
} // namespace comet
#endif // COMET_REGISTRY_H