126 lines
No EOL
3.7 KiB
Matlab
126 lines
No EOL
3.7 KiB
Matlab
clear
|
|
|
|
if(isunix)
|
|
executable = '"../../build/bin/FeatureExtraction"';
|
|
else
|
|
executable = '"../../x64/Release/FeatureExtraction.exe"';
|
|
end
|
|
|
|
output = 'yt_features/';
|
|
|
|
if(~exist(output, 'file'))
|
|
mkdir(output)
|
|
end
|
|
|
|
if(exist([getenv('USERPROFILE') '/Dropbox/AAM/test data/'], 'file'))
|
|
database_root = [getenv('USERPROFILE') '/Dropbox/AAM/test data/'];
|
|
elseif(exist('D:/Dropbox/Dropbox/AAM/test data/', 'file'))
|
|
database_root = 'D:/Dropbox/Dropbox/AAM/test data/';
|
|
elseif(exist('F:/Dropbox/AAM/test data/', 'file'))
|
|
database_root = 'F:/Dropbox/AAM/test data/';
|
|
elseif(exist('/media/tadas/5E08AE0D08ADE3ED/Dropbox/AAM/test data/', 'file'))
|
|
database_root = '/media/tadas/5E08AE0D08ADE3ED/Dropbox/AAM/test data/';
|
|
else
|
|
database_root = '/multicomp/datasets/';
|
|
end
|
|
|
|
database_root = [database_root, '/ytceleb/'];
|
|
|
|
in_vids = dir([database_root '/*.avi']);
|
|
|
|
command = sprintf('%s -2Dfp -out_dir "%s" ', executable, output);
|
|
% add all videos to single argument list (so as not to load the model anew
|
|
% for every video)
|
|
for i=1:numel(in_vids)
|
|
|
|
in_file_name = [database_root, '/', in_vids(i).name];
|
|
|
|
command = cat(2, command, [' -f "' in_file_name '" ']);
|
|
end
|
|
|
|
if(isunix)
|
|
unix(command, '-echo')
|
|
else
|
|
dos(command);
|
|
end
|
|
|
|
%%
|
|
output = 'yt_features_clm/';
|
|
|
|
if(~exist(output, 'file'))
|
|
mkdir(output)
|
|
end
|
|
|
|
command = sprintf('%s -2Dfp -out_dir "%s" -mloc model/main_clm_general.txt ', executable, output);
|
|
|
|
% add all videos to single argument list (so as not to load the model anew
|
|
% for every video)
|
|
for i=1:numel(in_vids)
|
|
in_file_name = [database_root, '/', in_vids(i).name];
|
|
command = cat(2, command, [' -f "' in_file_name '"']);
|
|
end
|
|
|
|
if(isunix)
|
|
unix(command, '-echo')
|
|
else
|
|
dos(command);
|
|
end
|
|
%% evaluating yt datasets
|
|
d_loc = 'yt_features/';
|
|
d_loc_clm = 'yt_features_clm/';
|
|
|
|
files_yt = dir([d_loc, '/*.csv']);
|
|
preds_all = [];
|
|
preds_all_clm = [];
|
|
gts_all = [];
|
|
for i = 1:numel(files_yt)
|
|
[~, name, ~] = fileparts(files_yt(i).name);
|
|
|
|
fname = [d_loc, files_yt(i).name];
|
|
if(i == 1)
|
|
% First read in the column names
|
|
tab = readtable(fname);
|
|
column_names = tab.Properties.VariableNames;
|
|
|
|
confidence_id = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'confidence'));
|
|
x_ids = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'x_'));
|
|
y_ids = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'y_'));
|
|
end
|
|
|
|
all_params = dlmread(fname, ',', 1, 0);
|
|
|
|
xs = all_params(:, x_ids);
|
|
ys = all_params(:, y_ids);
|
|
pred_landmarks = zeros([size(xs,2), 2, size(xs,1)]);
|
|
pred_landmarks(:,1,:) = xs';
|
|
pred_landmarks(:,2,:) = ys';
|
|
|
|
all_params = dlmread([d_loc_clm, files_yt(i).name], ',', 1, 0);
|
|
|
|
xs = all_params(:, x_ids);
|
|
ys = all_params(:, y_ids);
|
|
pred_landmarks_clm = zeros([size(xs,2), 2, size(xs,1)]);
|
|
pred_landmarks_clm(:,1,:) = xs';
|
|
pred_landmarks_clm(:,2,:) = ys';
|
|
|
|
load([database_root, name, '.mat']);
|
|
preds_all = cat(3, preds_all, pred_landmarks);
|
|
preds_all_clm = cat(3, preds_all_clm, pred_landmarks_clm);
|
|
gts_all = cat(3, gts_all, labels);
|
|
end
|
|
|
|
%%
|
|
[clnf_error, err_pp_clnf] = compute_error( gts_all - 1.5, preds_all);
|
|
[clm_error, err_pp_clm] = compute_error( gts_all - 1.5, preds_all_clm);
|
|
|
|
filename = sprintf('results/fps_yt');
|
|
save(filename);
|
|
|
|
% Also save them in a reasonable .txt format for easy comparison
|
|
f = fopen('results/fps_yt.txt', 'w');
|
|
fprintf(f, 'Model, mean, median\n');
|
|
fprintf(f, 'OpenFace (CLNF): %.4f, %.4f\n', mean(clnf_error), median(clnf_error));
|
|
fprintf(f, 'CLM: %.4f, %.4f\n', mean(clm_error), median(clm_error));
|
|
|
|
fclose(f);
|
|
clear 'f' |