631 lines
No EOL
18 KiB
C++
631 lines
No EOL
18 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// FeatureExtraction.cpp : Defines the entry point for the feature extraction console application.
|
|
|
|
// System includes
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/videoio/videoio.hpp> // Video write
|
|
#include <opencv2/videoio/videoio_c.h> // Video write
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
// Boost includes
|
|
#include <filesystem.hpp>
|
|
#include <filesystem/fstream.hpp>
|
|
#include <boost/algorithm/string.hpp>
|
|
|
|
// Local includes
|
|
#include "LandmarkCoreIncludes.h"
|
|
|
|
#include <Face_utils.h>
|
|
#include <FaceAnalyser.h>
|
|
#include <GazeEstimation.h>
|
|
#include <RecorderOpenFace.h>
|
|
#include <RecorderOpenFaceParameters.h>
|
|
|
|
#ifndef CONFIG_DIR
|
|
#define CONFIG_DIR "~"
|
|
#endif
|
|
|
|
#define INFO_STREAM( stream ) \
|
|
std::cout << stream << std::endl
|
|
|
|
#define WARN_STREAM( stream ) \
|
|
std::cout << "Warning: " << stream << std::endl
|
|
|
|
#define ERROR_STREAM( stream ) \
|
|
std::cout << "Error: " << stream << std::endl
|
|
|
|
static void printErrorAndAbort( const std::string & error )
|
|
{
|
|
std::cout << error << std::endl;
|
|
}
|
|
|
|
#define FATAL_STREAM( stream ) \
|
|
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
|
|
|
|
using namespace std;
|
|
|
|
using namespace boost::filesystem;
|
|
|
|
vector<string> get_arguments(int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments;
|
|
|
|
// First argument is reserved for the name of the executable
|
|
for(int i = 0; i < argc; ++i)
|
|
{
|
|
arguments.push_back(string(argv[i]));
|
|
}
|
|
return arguments;
|
|
}
|
|
|
|
void get_visualization_params(bool& visualize_track, bool& visualize_align, bool& visualize_hog, vector<string> &arguments);
|
|
|
|
void get_image_input_output_params_feats(vector<vector<string> > &input_image_files, bool& as_video, vector<string> &arguments);
|
|
|
|
// Some globals for tracking timing information for visualisation
|
|
double fps_tracker = -1.0;
|
|
int64 t0 = 0;
|
|
|
|
// Visualising the results
|
|
void visualise_tracking(cv::Mat& captured_image, const LandmarkDetector::CLNF& face_model, const LandmarkDetector::FaceModelParameters& det_parameters, cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, int frame_count, double fx, double fy, double cx, double cy)
|
|
{
|
|
|
|
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
|
|
double detection_certainty = face_model.detection_certainty;
|
|
bool detection_success = face_model.detection_success;
|
|
|
|
double visualisation_boundary = 0.2;
|
|
|
|
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
|
|
if (detection_certainty < visualisation_boundary)
|
|
{
|
|
LandmarkDetector::Draw(captured_image, face_model);
|
|
|
|
double vis_certainty = detection_certainty;
|
|
if (vis_certainty > 1)
|
|
vis_certainty = 1;
|
|
if (vis_certainty < -1)
|
|
vis_certainty = -1;
|
|
|
|
vis_certainty = (vis_certainty + 1) / (visualisation_boundary + 1);
|
|
|
|
// A rough heuristic for box around the face width
|
|
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
|
|
|
|
cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
|
|
|
|
// Draw it in reddish if uncertain, blueish if certain
|
|
LandmarkDetector::DrawBox(captured_image, pose_estimate_to_draw, cv::Scalar((1 - vis_certainty)*255.0, 0, vis_certainty * 255), thickness, fx, fy, cx, cy);
|
|
|
|
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
|
|
{
|
|
GazeAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
|
|
}
|
|
}
|
|
|
|
// Work out the framerate
|
|
if (frame_count % 10 == 0)
|
|
{
|
|
double t1 = cv::getTickCount();
|
|
fps_tracker = 10.0 / (double(t1 - t0) / cv::getTickFrequency());
|
|
t0 = t1;
|
|
}
|
|
|
|
// Write out the framerate on the image before displaying it
|
|
char fpsC[255];
|
|
std::sprintf(fpsC, "%d", (int)fps_tracker);
|
|
string fpsSt("FPS:");
|
|
fpsSt += fpsC;
|
|
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
|
|
|
|
}
|
|
|
|
int main (int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments = get_arguments(argc, argv);
|
|
|
|
// Get the input output file parameters
|
|
vector<string> input_files, output_files;
|
|
string output_codec;
|
|
LandmarkDetector::get_video_input_output_params(input_files, output_files, output_codec, arguments);
|
|
|
|
// TODO remove, when have a capture class
|
|
bool video_input = true;
|
|
bool images_as_video = false;
|
|
|
|
vector<vector<string> > input_image_files;
|
|
|
|
// Adding image support (TODO should be moved to capture)
|
|
if(input_files.empty())
|
|
{
|
|
vector<string> o_img;
|
|
get_image_input_output_params_feats(input_image_files, images_as_video, arguments);
|
|
|
|
if(!input_image_files.empty())
|
|
{
|
|
video_input = false;
|
|
}
|
|
}
|
|
|
|
// Grab camera parameters, if they are not defined (approximate values will be used)
|
|
float fx = 0, fy = 0, cx = 0, cy = 0;
|
|
int d = 0;
|
|
// Get camera parameters
|
|
LandmarkDetector::get_camera_params(d, fx, fy, cx, cy, arguments);
|
|
|
|
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
|
|
bool cx_undefined = false;
|
|
bool fx_undefined = false;
|
|
if (cx == 0 || cy == 0)
|
|
{
|
|
cx_undefined = true;
|
|
}
|
|
if (fx == 0 || fy == 0)
|
|
{
|
|
fx_undefined = true;
|
|
}
|
|
|
|
// Deciding what to visualize
|
|
bool visualize_track = false;
|
|
bool visualize_align = false;
|
|
bool visualize_hog = false;
|
|
get_visualization_params(visualize_track, visualize_align, visualize_hog, arguments);
|
|
|
|
// If multiple video files are tracked, use this to indicate if we are done
|
|
bool done = false;
|
|
int f_n = -1;
|
|
int curr_img = -1;
|
|
|
|
// Load the modules that are being used for tracking and face analysis
|
|
// Load face landmark detector
|
|
LandmarkDetector::FaceModelParameters det_parameters(arguments);
|
|
// Always track gaze in feature extraction
|
|
det_parameters.track_gaze = true;
|
|
LandmarkDetector::CLNF face_model(det_parameters.model_location);
|
|
|
|
// Load facial feature extractor and AU analyser
|
|
FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments);
|
|
FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params);
|
|
|
|
while (!done) // this is not a for loop as we might also be reading from a webcam
|
|
{
|
|
|
|
string current_file;
|
|
|
|
cv::VideoCapture video_capture;
|
|
|
|
cv::Mat captured_image;
|
|
int total_frames = -1;
|
|
int reported_completion = 0;
|
|
|
|
double fps_vid_in = -1.0;
|
|
|
|
// TODO this should be moved to a SequenceCapture class
|
|
if (video_input)
|
|
{
|
|
// We might specify multiple video files as arguments
|
|
if (input_files.size() > 0)
|
|
{
|
|
f_n++;
|
|
current_file = input_files[f_n];
|
|
}
|
|
else
|
|
{
|
|
// If we want to write out from webcam
|
|
f_n = 0;
|
|
}
|
|
// Do some grabbing
|
|
if (current_file.size() > 0)
|
|
{
|
|
INFO_STREAM("Attempting to read from file: " << current_file);
|
|
video_capture = cv::VideoCapture(current_file);
|
|
total_frames = (int)video_capture.get(CV_CAP_PROP_FRAME_COUNT);
|
|
fps_vid_in = video_capture.get(CV_CAP_PROP_FPS);
|
|
|
|
// Check if fps is nan or less than 0
|
|
if (fps_vid_in != fps_vid_in || fps_vid_in <= 0)
|
|
{
|
|
INFO_STREAM("FPS of the video file cannot be determined, assuming 30");
|
|
fps_vid_in = 30;
|
|
}
|
|
}
|
|
|
|
if (!video_capture.isOpened())
|
|
{
|
|
FATAL_STREAM("Failed to open video source, exiting");
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
INFO_STREAM("Device or file opened");
|
|
}
|
|
|
|
video_capture >> captured_image;
|
|
}
|
|
else
|
|
{
|
|
f_n++;
|
|
curr_img++;
|
|
if (!input_image_files[f_n].empty())
|
|
{
|
|
string curr_img_file = input_image_files[f_n][curr_img];
|
|
captured_image = cv::imread(curr_img_file, -1);
|
|
}
|
|
else
|
|
{
|
|
FATAL_STREAM("No .jpg or .png images in a specified drectory, exiting");
|
|
return 1;
|
|
}
|
|
|
|
// If image sequence provided, assume the fps is 30
|
|
fps_vid_in = 30;
|
|
}
|
|
|
|
// If optical centers are not defined just use center of image
|
|
if (cx_undefined)
|
|
{
|
|
cx = captured_image.cols / 2.0f;
|
|
cy = captured_image.rows / 2.0f;
|
|
}
|
|
// Use a rough guess-timate of focal length
|
|
if (fx_undefined)
|
|
{
|
|
fx = 500 * (captured_image.cols / 640.0);
|
|
fy = 500 * (captured_image.rows / 480.0);
|
|
|
|
fx = (fx + fy) / 2.0;
|
|
fy = fx;
|
|
}
|
|
|
|
Utilities::RecorderOpenFaceParameters recording_params(arguments, true, fps_vid_in);
|
|
Utilities::RecorderOpenFace open_face_rec(output_files[f_n], input_files[f_n], recording_params);
|
|
|
|
int frame_count = 0;
|
|
|
|
// Use for timestamping if using a webcam
|
|
int64 t_initial = cv::getTickCount();
|
|
|
|
// Timestamp in seconds of current processing
|
|
double time_stamp = 0;
|
|
|
|
INFO_STREAM("Starting tracking");
|
|
while (!captured_image.empty())
|
|
{
|
|
|
|
// Grab the timestamp first
|
|
if (video_input)
|
|
{
|
|
time_stamp = (double)frame_count * (1.0 / fps_vid_in);
|
|
}
|
|
else
|
|
{
|
|
// if loading images assume 30fps
|
|
time_stamp = (double)frame_count * (1.0 / 30.0);
|
|
}
|
|
|
|
// Reading the images
|
|
cv::Mat_<uchar> grayscale_image;
|
|
|
|
if (captured_image.channels() == 3)
|
|
{
|
|
cvtColor(captured_image, grayscale_image, CV_BGR2GRAY);
|
|
}
|
|
else
|
|
{
|
|
grayscale_image = captured_image.clone();
|
|
}
|
|
|
|
// The actual facial landmark detection / tracking
|
|
bool detection_success;
|
|
|
|
if (video_input || images_as_video)
|
|
{
|
|
detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_model, det_parameters);
|
|
}
|
|
else
|
|
{
|
|
detection_success = LandmarkDetector::DetectLandmarksInImage(grayscale_image, face_model, det_parameters);
|
|
}
|
|
|
|
// Gaze tracking, absolute gaze direction
|
|
cv::Point3f gazeDirection0(0, 0, -1);
|
|
cv::Point3f gazeDirection1(0, 0, -1);
|
|
cv::Vec2d gazeAngle(0, 0);
|
|
|
|
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
|
|
{
|
|
GazeAnalysis::EstimateGaze(face_model, gazeDirection0, fx, fy, cx, cy, true);
|
|
GazeAnalysis::EstimateGaze(face_model, gazeDirection1, fx, fy, cx, cy, false);
|
|
gazeAngle = GazeAnalysis::GetGazeAngle(gazeDirection0, gazeDirection1);
|
|
}
|
|
|
|
// Do face alignment
|
|
cv::Mat sim_warped_img;
|
|
cv::Mat_<double> hog_descriptor;
|
|
int num_hog_rows = 0, num_hog_cols = 0;
|
|
|
|
// As this can be expensive only compute it if needed by output or visualization
|
|
if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || recording_params.outputAUs() || visualize_align || visualize_hog)
|
|
{
|
|
face_analyser.AddNextFrame(captured_image, face_model.detected_landmarks, face_model.detection_success, time_stamp, false, !det_parameters.quiet_mode);
|
|
face_analyser.GetLatestAlignedFace(sim_warped_img);
|
|
|
|
if (!det_parameters.quiet_mode && visualize_align)
|
|
{
|
|
cv::imshow("sim_warp", sim_warped_img);
|
|
}
|
|
if (recording_params.outputHOG() || (visualize_hog && !det_parameters.quiet_mode))
|
|
{
|
|
face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols);
|
|
|
|
if (visualize_hog && !det_parameters.quiet_mode)
|
|
{
|
|
cv::Mat_<double> hog_descriptor_vis;
|
|
FaceAnalysis::Visualise_FHOG(hog_descriptor, num_hog_rows, num_hog_cols, hog_descriptor_vis);
|
|
cv::imshow("hog", hog_descriptor_vis);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Work out the pose of the head from the tracked model
|
|
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
|
|
|
|
// Drawing the visualization on the captured image
|
|
if (recording_params.outputTrackedVideo() || (visualize_track && !det_parameters.quiet_mode))
|
|
{
|
|
visualise_tracking(captured_image, face_model, det_parameters, gazeDirection0, gazeDirection1, frame_count, fx, fy, cx, cy);
|
|
}
|
|
|
|
// Setting up the recorder output
|
|
open_face_rec.SetObservationHOG(detection_success, hog_descriptor, num_hog_rows, num_hog_cols, 31); // The number of channels in HOG is fixed at the moment, as using FHOG
|
|
open_face_rec.SetObservationVisualization(captured_image);
|
|
open_face_rec.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass());
|
|
open_face_rec.SetObservationGaze(gazeDirection0, gazeDirection1, gazeAngle, LandmarkDetector::CalculateAllEyeLandmarks(face_model));
|
|
open_face_rec.SetObservationLandmarks(face_model.detected_landmarks, face_model.GetShape(fx, fy, cx, cy), face_model.params_global, face_model.params_local, face_model.detection_certainty, detection_success);
|
|
open_face_rec.SetObservationPose(pose_estimate);
|
|
open_face_rec.SetObservationTimestamp(time_stamp);
|
|
open_face_rec.WriteObservation();
|
|
|
|
// Visualize the image if desired
|
|
if (visualize_track && !det_parameters.quiet_mode)
|
|
{
|
|
cv::namedWindow("tracking_result", 1);
|
|
cv::imshow("tracking_result", captured_image);
|
|
}
|
|
|
|
// Grabbing the next frame (todo this should be part of capture)
|
|
if(video_input)
|
|
{
|
|
video_capture >> captured_image;
|
|
}
|
|
else
|
|
{
|
|
curr_img++;
|
|
if(curr_img < (int)input_image_files[f_n].size())
|
|
{
|
|
string curr_img_file = input_image_files[f_n][curr_img];
|
|
captured_image = cv::imread(curr_img_file, -1);
|
|
}
|
|
else
|
|
{
|
|
captured_image = cv::Mat();
|
|
}
|
|
}
|
|
|
|
if (!det_parameters.quiet_mode)
|
|
{
|
|
// detect key presses
|
|
char character_press = cv::waitKey(1);
|
|
|
|
// restart the tracker
|
|
if(character_press == 'r')
|
|
{
|
|
face_model.Reset();
|
|
}
|
|
// quit the application
|
|
else if(character_press=='q')
|
|
{
|
|
return(0);
|
|
}
|
|
}
|
|
|
|
// Update the frame count
|
|
frame_count++;
|
|
|
|
if(total_frames != -1)
|
|
{
|
|
if((double)frame_count/(double)total_frames >= reported_completion / 10.0)
|
|
{
|
|
cout << reported_completion * 10 << "% ";
|
|
reported_completion = reported_completion + 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
open_face_rec.Close();
|
|
|
|
if (output_files.size() > 0 && recording_params.outputAUs())
|
|
{
|
|
cout << "Postprocessing the Action Unit predictions" << endl;
|
|
face_analyser.PostprocessOutputFile(open_face_rec.GetCSVFile());
|
|
}
|
|
|
|
// Reset the models for the next video
|
|
face_analyser.Reset();
|
|
face_model.Reset();
|
|
|
|
frame_count = 0;
|
|
curr_img = -1;
|
|
|
|
if (total_frames != -1)
|
|
{
|
|
cout << endl;
|
|
}
|
|
|
|
// break out of the loop if done with all the files (or using a webcam)
|
|
if((video_input && f_n == input_files.size() -1) || (!video_input && f_n == input_image_files.size() - 1))
|
|
{
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void get_visualization_params(bool& visualize_track, bool& visualize_align, bool& visualize_hog,vector<string> &arguments)
|
|
{
|
|
|
|
bool* valid = new bool[arguments.size()];
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
valid[i] = true;
|
|
}
|
|
|
|
string output_root = "";
|
|
|
|
visualize_align = false;
|
|
visualize_hog = false;
|
|
visualize_track = false;
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
if (arguments[i].compare("-verbose") == 0)
|
|
{
|
|
visualize_track = true;
|
|
visualize_align = true;
|
|
visualize_hog = true;
|
|
}
|
|
else if (arguments[i].compare("-vis-align") == 0)
|
|
{
|
|
visualize_align = true;
|
|
valid[i] = false;
|
|
}
|
|
else if (arguments[i].compare("-vis-hog") == 0)
|
|
{
|
|
visualize_hog = true;
|
|
valid[i] = false;
|
|
}
|
|
else if (arguments[i].compare("-vis-track") == 0)
|
|
{
|
|
visualize_track = true;
|
|
valid[i] = false;
|
|
}
|
|
}
|
|
|
|
for (int i = arguments.size() - 1; i >= 0; --i)
|
|
{
|
|
if (!valid[i])
|
|
{
|
|
arguments.erase(arguments.begin() + i);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Can process images via directories creating a separate output file per directory
|
|
void get_image_input_output_params_feats(vector<vector<string> > &input_image_files, bool& as_video, vector<string> &arguments)
|
|
{
|
|
bool* valid = new bool[arguments.size()];
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
valid[i] = true;
|
|
if (arguments[i].compare("-fdir") == 0)
|
|
{
|
|
|
|
// parse the -fdir directory by reading in all of the .png and .jpg files in it
|
|
path image_directory(arguments[i + 1]);
|
|
|
|
try
|
|
{
|
|
// does the file exist and is it a directory
|
|
if (exists(image_directory) && is_directory(image_directory))
|
|
{
|
|
|
|
vector<path> file_in_directory;
|
|
copy(directory_iterator(image_directory), directory_iterator(), back_inserter(file_in_directory));
|
|
|
|
// Sort the images in the directory first
|
|
sort(file_in_directory.begin(), file_in_directory.end());
|
|
|
|
vector<string> curr_dir_files;
|
|
|
|
for (vector<path>::const_iterator file_iterator(file_in_directory.begin()); file_iterator != file_in_directory.end(); ++file_iterator)
|
|
{
|
|
// Possible image extension .jpg and .png
|
|
if (file_iterator->extension().string().compare(".jpg") == 0 || file_iterator->extension().string().compare(".png") == 0)
|
|
{
|
|
curr_dir_files.push_back(file_iterator->string());
|
|
}
|
|
}
|
|
|
|
input_image_files.push_back(curr_dir_files);
|
|
}
|
|
}
|
|
catch (const filesystem_error& ex)
|
|
{
|
|
cout << ex.what() << '\n';
|
|
}
|
|
|
|
valid[i] = false;
|
|
valid[i + 1] = false;
|
|
i++;
|
|
}
|
|
else if (arguments[i].compare("-asvid") == 0)
|
|
{
|
|
as_video = true;
|
|
}
|
|
}
|
|
|
|
// Clear up the argument list
|
|
for (int i = arguments.size() - 1; i >= 0; --i)
|
|
{
|
|
if (!valid[i])
|
|
{
|
|
arguments.erase(arguments.begin() + i);
|
|
}
|
|
}
|
|
|
|
} |