sustaining_gazes/lib/3rdParty/OpenCV3.4/include/opencv2/core/vsx_utils.hpp

1071 lines
52 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_HAL_VSX_UTILS_HPP
#define OPENCV_HAL_VSX_UTILS_HPP
#include "opencv2/core/cvdef.h"
//! @addtogroup core_utils_vsx
//! @{
#if CV_VSX
#define __VSX_S16__(c, v) (c){v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v}
#define __VSX_S8__(c, v) (c){v, v, v, v, v, v, v, v}
#define __VSX_S4__(c, v) (c){v, v, v, v}
#define __VSX_S2__(c, v) (c){v, v}
typedef __vector unsigned char vec_uchar16;
#define vec_uchar16_set(...) (vec_uchar16){__VA_ARGS__}
#define vec_uchar16_sp(c) (__VSX_S16__(vec_uchar16, c))
#define vec_uchar16_c(v) ((vec_uchar16)(v))
#define vec_uchar16_mx vec_uchar16_sp(0xFF)
#define vec_uchar16_mn vec_uchar16_sp(0)
#define vec_uchar16_z vec_uchar16_mn
typedef __vector signed char vec_char16;
#define vec_char16_set(...) (vec_char16){__VA_ARGS__}
#define vec_char16_sp(c) (__VSX_S16__(vec_char16, c))
#define vec_char16_c(v) ((vec_char16)(v))
#define vec_char16_mx vec_char16_sp(0x7F)
#define vec_char16_mn vec_char16_sp(-0x7F-1)
#define vec_char16_z vec_char16_sp(0)
typedef __vector unsigned short vec_ushort8;
#define vec_ushort8_set(...) (vec_ushort8){__VA_ARGS__}
#define vec_ushort8_sp(c) (__VSX_S8__(vec_ushort8, c))
#define vec_ushort8_c(v) ((vec_ushort8)(v))
#define vec_ushort8_mx vec_ushort8_sp(0xFFFF)
#define vec_ushort8_mn vec_ushort8_sp(0)
#define vec_ushort8_z vec_ushort8_mn
typedef __vector signed short vec_short8;
#define vec_short8_set(...) (vec_short8){__VA_ARGS__}
#define vec_short8_sp(c) (__VSX_S8__(vec_short8, c))
#define vec_short8_c(v) ((vec_short8)(v))
#define vec_short8_mx vec_short8_sp(0x7FFF)
#define vec_short8_mn vec_short8_sp(-0x7FFF-1)
#define vec_short8_z vec_short8_sp(0)
typedef __vector unsigned int vec_uint4;
#define vec_uint4_set(...) (vec_uint4){__VA_ARGS__}
#define vec_uint4_sp(c) (__VSX_S4__(vec_uint4, c))
#define vec_uint4_c(v) ((vec_uint4)(v))
#define vec_uint4_mx vec_uint4_sp(0xFFFFFFFFU)
#define vec_uint4_mn vec_uint4_sp(0)
#define vec_uint4_z vec_uint4_mn
typedef __vector signed int vec_int4;
#define vec_int4_set(...) (vec_int4){__VA_ARGS__}
#define vec_int4_sp(c) (__VSX_S4__(vec_int4, c))
#define vec_int4_c(v) ((vec_int4)(v))
#define vec_int4_mx vec_int4_sp(0x7FFFFFFF)
#define vec_int4_mn vec_int4_sp(-0x7FFFFFFF-1)
#define vec_int4_z vec_int4_sp(0)
typedef __vector float vec_float4;
#define vec_float4_set(...) (vec_float4){__VA_ARGS__}
#define vec_float4_sp(c) (__VSX_S4__(vec_float4, c))
#define vec_float4_c(v) ((vec_float4)(v))
#define vec_float4_mx vec_float4_sp(3.40282347E+38F)
#define vec_float4_mn vec_float4_sp(1.17549435E-38F)
#define vec_float4_z vec_float4_sp(0)
typedef __vector unsigned long long vec_udword2;
#define vec_udword2_set(...) (vec_udword2){__VA_ARGS__}
#define vec_udword2_sp(c) (__VSX_S2__(vec_udword2, c))
#define vec_udword2_c(v) ((vec_udword2)(v))
#define vec_udword2_mx vec_udword2_sp(18446744073709551615ULL)
#define vec_udword2_mn vec_udword2_sp(0)
#define vec_udword2_z vec_udword2_mn
typedef __vector signed long long vec_dword2;
#define vec_dword2_set(...) (vec_dword2){__VA_ARGS__}
#define vec_dword2_sp(c) (__VSX_S2__(vec_dword2, c))
#define vec_dword2_c(v) ((vec_dword2)(v))
#define vec_dword2_mx vec_dword2_sp(9223372036854775807LL)
#define vec_dword2_mn vec_dword2_sp(-9223372036854775807LL-1)
#define vec_dword2_z vec_dword2_sp(0)
typedef __vector double vec_double2;
#define vec_double2_set(...) (vec_double2){__VA_ARGS__}
#define vec_double2_c(v) ((vec_double2)(v))
#define vec_double2_sp(c) (__VSX_S2__(vec_double2, c))
#define vec_double2_mx vec_double2_sp(1.7976931348623157E+308)
#define vec_double2_mn vec_double2_sp(2.2250738585072014E-308)
#define vec_double2_z vec_double2_sp(0)
#define vec_bchar16 __vector __bool char
#define vec_bchar16_set(...) (vec_bchar16){__VA_ARGS__}
#define vec_bchar16_c(v) ((vec_bchar16)(v))
#define vec_bchar16_f (__VSX_S16__(vec_bchar16, 0))
#define vec_bchar16_t (__VSX_S16__(vec_bchar16, 1))
#define vec_bshort8 __vector __bool short
#define vec_bshort8_set(...) (vec_bshort8){__VA_ARGS__}
#define vec_bshort8_c(v) ((vec_bshort8)(v))
#define vec_bshort8_f (__VSX_S8__(vec_bshort8, 0))
#define vec_bshort8_t (__VSX_S8__(vec_bshort8, 1))
#define vec_bint4 __vector __bool int
#define vec_bint4_set(...) (vec_bint4){__VA_ARGS__}
#define vec_bint4_c(v) ((vec_bint4)(v))
#define vec_bint4_f (__VSX_S4__(vec_bint4, 0))
#define vec_bint4_t (__VSX_S4__(vec_bint4, 1))
#define vec_bdword2 __vector __bool long long
#define vec_bdword2_set(...) (vec_bdword2){__VA_ARGS__}
#define vec_bdword2_c(v) ((vec_bdword2)(v))
#define vec_bdword2_f (__VSX_S2__(vec_bdword2, 0))
#define vec_bdword2_t (__VSX_S2__(vec_bdword2, 1))
#define VSX_FINLINE(tp) extern inline tp __attribute__((always_inline))
#define VSX_REDIRECT_1RG(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a) { return fn2(a); }
#define VSX_REDIRECT_2RG(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a, const rg& b) { return fn2(a, b); }
/*
* GCC VSX compatibility
**/
#if defined(__GNUG__) && !defined(__clang__)
// inline asm helper
#define VSX_IMPL_1RG(rt, rto, rg, rgo, opc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ rt rs; __asm__ __volatile__(#opc" %x0,%x1" : "="#rto (rs) : #rgo (a)); return rs; }
#define VSX_IMPL_1VRG(rt, rg, opc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ rt rs; __asm__ __volatile__(#opc" %0,%1" : "=v" (rs) : "v" (a)); return rs; }
#define VSX_IMPL_2VRG_F(rt, rg, fopc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a, const rg& b) \
{ rt rs; __asm__ __volatile__(fopc : "=v" (rs) : "v" (a), "v" (b)); return rs; }
#define VSX_IMPL_2VRG(rt, rg, opc, fnm) VSX_IMPL_2VRG_F(rt, rg, #opc" %0,%1,%2", fnm)
#if __GNUG__ < 7
// up to GCC 6 vec_mul only supports precisions and llong
# ifdef vec_mul
# undef vec_mul
# endif
/*
* there's no a direct instruction for supporting 16-bit multiplication in ISA 2.07,
* XLC Implement it by using instruction "multiply even", "multiply odd" and "permute"
* todo: Do I need to support 8-bit ?
**/
# define VSX_IMPL_MULH(Tvec, Tcast) \
VSX_FINLINE(Tvec) vec_mul(const Tvec& a, const Tvec& b) \
{ \
static const vec_uchar16 even_perm = {0, 1, 16, 17, 4, 5, 20, 21, \
8, 9, 24, 25, 12, 13, 28, 29}; \
return vec_perm(Tcast(vec_mule(a, b)), Tcast(vec_mulo(a, b)), even_perm); \
}
VSX_IMPL_MULH(vec_short8, vec_short8_c)
VSX_IMPL_MULH(vec_ushort8, vec_ushort8_c)
// vmuluwm can be used for unsigned or signed integers, that's what they said
VSX_IMPL_2VRG(vec_int4, vec_int4, vmuluwm, vec_mul)
VSX_IMPL_2VRG(vec_uint4, vec_uint4, vmuluwm, vec_mul)
// redirect to GCC builtin vec_mul, since it already supports precisions and llong
VSX_REDIRECT_2RG(vec_float4, vec_float4, vec_mul, __builtin_vec_mul)
VSX_REDIRECT_2RG(vec_double2, vec_double2, vec_mul, __builtin_vec_mul)
VSX_REDIRECT_2RG(vec_dword2, vec_dword2, vec_mul, __builtin_vec_mul)
VSX_REDIRECT_2RG(vec_udword2, vec_udword2, vec_mul, __builtin_vec_mul)
#endif // __GNUG__ < 7
#if __GNUG__ < 6
/*
* Instruction "compare greater than or equal" in ISA 2.07 only supports single
* and double precision.
* In XLC and new versions of GCC implement integers by using instruction "greater than" and NOR.
**/
# ifdef vec_cmpge
# undef vec_cmpge
# endif
# ifdef vec_cmple
# undef vec_cmple
# endif
# define vec_cmple(a, b) vec_cmpge(b, a)
# define VSX_IMPL_CMPGE(rt, rg, opc, fnm) \
VSX_IMPL_2VRG_F(rt, rg, #opc" %0,%2,%1\n\t xxlnor %x0,%x0,%x0", fnm)
VSX_IMPL_CMPGE(vec_bchar16, vec_char16, vcmpgtsb, vec_cmpge)
VSX_IMPL_CMPGE(vec_bchar16, vec_uchar16, vcmpgtub, vec_cmpge)
VSX_IMPL_CMPGE(vec_bshort8, vec_short8, vcmpgtsh, vec_cmpge)
VSX_IMPL_CMPGE(vec_bshort8, vec_ushort8, vcmpgtuh, vec_cmpge)
VSX_IMPL_CMPGE(vec_bint4, vec_int4, vcmpgtsw, vec_cmpge)
VSX_IMPL_CMPGE(vec_bint4, vec_uint4, vcmpgtuw, vec_cmpge)
VSX_IMPL_CMPGE(vec_bdword2, vec_dword2, vcmpgtsd, vec_cmpge)
VSX_IMPL_CMPGE(vec_bdword2, vec_udword2, vcmpgtud, vec_cmpge)
// redirect to GCC builtin cmpge, since it already supports precisions
VSX_REDIRECT_2RG(vec_bint4, vec_float4, vec_cmpge, __builtin_vec_cmpge)
VSX_REDIRECT_2RG(vec_bdword2, vec_double2, vec_cmpge, __builtin_vec_cmpge)
// up to gcc5 vec_nor doesn't support bool long long
# undef vec_nor
template<typename T>
VSX_REDIRECT_2RG(T, T, vec_nor, __builtin_vec_nor)
VSX_FINLINE(vec_bdword2) vec_nor(const vec_bdword2& a, const vec_bdword2& b)
{ return vec_bdword2_c(__builtin_vec_nor(vec_dword2_c(a), vec_dword2_c(b))); }
// vec_packs doesn't support double words in gcc4 and old versions of gcc5
# undef vec_packs
VSX_REDIRECT_2RG(vec_char16, vec_short8, vec_packs, __builtin_vec_packs)
VSX_REDIRECT_2RG(vec_uchar16, vec_ushort8, vec_packs, __builtin_vec_packs)
VSX_REDIRECT_2RG(vec_short8, vec_int4, vec_packs, __builtin_vec_packs)
VSX_REDIRECT_2RG(vec_ushort8, vec_uint4, vec_packs, __builtin_vec_packs)
VSX_IMPL_2VRG_F(vec_int4, vec_dword2, "vpksdss %0,%2,%1", vec_packs)
VSX_IMPL_2VRG_F(vec_uint4, vec_udword2, "vpkudus %0,%2,%1", vec_packs)
#endif // __GNUG__ < 6
#if __GNUG__ < 5
// vec_xxpermdi in gcc4 missing little-endian supports just like clang
# define vec_permi(a, b, c) vec_xxpermdi(b, a, (3 ^ ((c & 1) << 1 | c >> 1)))
#else
# define vec_permi vec_xxpermdi
#endif // __GNUG__ < 5
// shift left double by word immediate
#ifndef vec_sldw
# define vec_sldw __builtin_vsx_xxsldwi
#endif
// vector population count
VSX_IMPL_1VRG(vec_uchar16, vec_uchar16, vpopcntb, vec_popcntu)
VSX_IMPL_1VRG(vec_uchar16, vec_char16, vpopcntb, vec_popcntu)
VSX_IMPL_1VRG(vec_ushort8, vec_ushort8, vpopcnth, vec_popcntu)
VSX_IMPL_1VRG(vec_ushort8, vec_short8, vpopcnth, vec_popcntu)
VSX_IMPL_1VRG(vec_uint4, vec_uint4, vpopcntw, vec_popcntu)
VSX_IMPL_1VRG(vec_uint4, vec_int4, vpopcntw, vec_popcntu)
VSX_IMPL_1VRG(vec_udword2, vec_udword2, vpopcntd, vec_popcntu)
VSX_IMPL_1VRG(vec_udword2, vec_dword2, vpopcntd, vec_popcntu)
// converts between single and double-precision
VSX_REDIRECT_1RG(vec_float4, vec_double2, vec_cvfo, __builtin_vsx_xvcvdpsp)
VSX_REDIRECT_1RG(vec_double2, vec_float4, vec_cvfo, __builtin_vsx_xvcvspdp)
// converts word and doubleword to double-precision
#ifdef vec_ctd
# undef vec_ctd
#endif
VSX_IMPL_1RG(vec_double2, wd, vec_int4, wa, xvcvsxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, wd, vec_uint4, wa, xvcvuxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, wd, vec_dword2, wi, xvcvsxddp, vec_ctd)
VSX_IMPL_1RG(vec_double2, wd, vec_udword2, wi, xvcvuxddp, vec_ctd)
// converts word and doubleword to single-precision
#undef vec_ctf
VSX_IMPL_1RG(vec_float4, wf, vec_int4, wa, xvcvsxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, wf, vec_uint4, wa, xvcvuxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, wf, vec_dword2, wi, xvcvsxdsp, vec_ctfo)
VSX_IMPL_1RG(vec_float4, wf, vec_udword2, wi, xvcvuxdsp, vec_ctfo)
// converts single and double precision to signed word
#undef vec_cts
VSX_IMPL_1RG(vec_int4, wa, vec_double2, wd, xvcvdpsxws, vec_ctso)
VSX_IMPL_1RG(vec_int4, wa, vec_float4, wf, xvcvspsxws, vec_cts)
// converts single and double precision to unsigned word
#undef vec_ctu
VSX_IMPL_1RG(vec_uint4, wa, vec_double2, wd, xvcvdpuxws, vec_ctuo)
VSX_IMPL_1RG(vec_uint4, wa, vec_float4, wf, xvcvspuxws, vec_ctu)
// converts single and double precision to signed doubleword
#ifdef vec_ctsl
# undef vec_ctsl
#endif
VSX_IMPL_1RG(vec_dword2, wi, vec_double2, wd, xvcvdpsxds, vec_ctsl)
VSX_IMPL_1RG(vec_dword2, wi, vec_float4, wf, xvcvspsxds, vec_ctslo)
// converts single and double precision to unsigned doubleword
#ifdef vec_ctul
# undef vec_ctul
#endif
VSX_IMPL_1RG(vec_udword2, wi, vec_double2, wd, xvcvdpuxds, vec_ctul)
VSX_IMPL_1RG(vec_udword2, wi, vec_float4, wf, xvcvspuxds, vec_ctulo)
// just in case if GCC doesn't define it
#ifndef vec_xl
# define vec_xl vec_vsx_ld
# define vec_xst vec_vsx_st
#endif
#endif // GCC VSX compatibility
/*
* CLANG VSX compatibility
**/
#if defined(__clang__) && !defined(__IBMCPP__)
/*
* CLANG doesn't support %x<n> in the inline asm template which fixes register number
* when using any of the register constraints wa, wd, wf
*
* For more explanation checkout PowerPC and IBM RS6000 in https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html
* Also there's already an open bug https://bugs.llvm.org/show_bug.cgi?id=31837
*
* So we're not able to use inline asm and only use built-in functions that CLANG supports
* and use __builtin_convertvector if clang missng any of vector conversions built-in functions
*/
// convert vector helper
#define VSX_IMPL_CONVERT(rt, rg, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) { return __builtin_convertvector(a, rt); }
#if __clang_major__ < 5
// implement vec_permi in a dirty way
# define VSX_IMPL_CLANG_4_PERMI(Tvec) \
VSX_FINLINE(Tvec) vec_permi(const Tvec& a, const Tvec& b, unsigned const char c) \
{ \
switch (c) \
{ \
case 0: \
return vec_mergeh(a, b); \
case 1: \
return vec_mergel(vec_mergeh(a, a), b); \
case 2: \
return vec_mergeh(vec_mergel(a, a), b); \
default: \
return vec_mergel(a, b); \
} \
}
VSX_IMPL_CLANG_4_PERMI(vec_udword2)
VSX_IMPL_CLANG_4_PERMI(vec_dword2)
VSX_IMPL_CLANG_4_PERMI(vec_double2)
// vec_xxsldwi is missing in clang 4
# define vec_xxsldwi(a, b, c) vec_sld(a, b, (c) * 4)
#else
// vec_xxpermdi is missing little-endian supports in clang 4 just like gcc4
# define vec_permi(a, b, c) vec_xxpermdi(b, a, (3 ^ ((c & 1) << 1 | c >> 1)))
#endif // __clang_major__ < 5
// shift left double by word immediate
#ifndef vec_sldw
# define vec_sldw vec_xxsldwi
#endif
// Implement vec_rsqrt since clang only supports vec_rsqrte
#ifndef vec_rsqrt
VSX_FINLINE(vec_float4) vec_rsqrt(const vec_float4& a)
{ return vec_div(vec_float4_sp(1), vec_sqrt(a)); }
VSX_FINLINE(vec_double2) vec_rsqrt(const vec_double2& a)
{ return vec_div(vec_double2_sp(1), vec_sqrt(a)); }
#endif
// vec_promote missing support for doubleword
VSX_FINLINE(vec_dword2) vec_promote(long long a, int b)
{
vec_dword2 ret = vec_dword2_z;
ret[b & 1] = a;
return ret;
}
VSX_FINLINE(vec_udword2) vec_promote(unsigned long long a, int b)
{
vec_udword2 ret = vec_udword2_z;
ret[b & 1] = a;
return ret;
}
// vec_popcnt should return unsigned but clang has different thought just like gcc in vec_vpopcnt
#define VSX_IMPL_POPCNTU(Tvec, Tvec2, ucast) \
VSX_FINLINE(Tvec) vec_popcntu(const Tvec2& a) \
{ return ucast(vec_popcnt(a)); }
VSX_IMPL_POPCNTU(vec_uchar16, vec_char16, vec_uchar16_c);
VSX_IMPL_POPCNTU(vec_ushort8, vec_short8, vec_ushort8_c);
VSX_IMPL_POPCNTU(vec_uint4, vec_int4, vec_uint4_c);
// redirect unsigned types
VSX_REDIRECT_1RG(vec_uchar16, vec_uchar16, vec_popcntu, vec_popcnt)
VSX_REDIRECT_1RG(vec_ushort8, vec_ushort8, vec_popcntu, vec_popcnt)
VSX_REDIRECT_1RG(vec_uint4, vec_uint4, vec_popcntu, vec_popcnt)
// converts between single and double precision
VSX_REDIRECT_1RG(vec_float4, vec_double2, vec_cvfo, __builtin_vsx_xvcvdpsp)
VSX_REDIRECT_1RG(vec_double2, vec_float4, vec_cvfo, __builtin_vsx_xvcvspdp)
// converts word and doubleword to double-precision
#ifdef vec_ctd
# undef vec_ctd
#endif
VSX_REDIRECT_1RG(vec_double2, vec_int4, vec_ctdo, __builtin_vsx_xvcvsxwdp)
VSX_REDIRECT_1RG(vec_double2, vec_uint4, vec_ctdo, __builtin_vsx_xvcvuxwdp)
VSX_IMPL_CONVERT(vec_double2, vec_dword2, vec_ctd)
VSX_IMPL_CONVERT(vec_double2, vec_udword2, vec_ctd)
// converts word and doubleword to single-precision
#if __clang_major__ > 4
# undef vec_ctf
#endif
VSX_IMPL_CONVERT(vec_float4, vec_int4, vec_ctf)
VSX_IMPL_CONVERT(vec_float4, vec_uint4, vec_ctf)
VSX_REDIRECT_1RG(vec_float4, vec_dword2, vec_ctfo, __builtin_vsx_xvcvsxdsp)
VSX_REDIRECT_1RG(vec_float4, vec_udword2, vec_ctfo, __builtin_vsx_xvcvuxdsp)
// converts single and double precision to signed word
#if __clang_major__ > 4
# undef vec_cts
#endif
VSX_REDIRECT_1RG(vec_int4, vec_double2, vec_ctso, __builtin_vsx_xvcvdpsxws)
VSX_IMPL_CONVERT(vec_int4, vec_float4, vec_cts)
// converts single and double precision to unsigned word
#if __clang_major__ > 4
# undef vec_ctu
#endif
VSX_REDIRECT_1RG(vec_uint4, vec_double2, vec_ctuo, __builtin_vsx_xvcvdpuxws)
VSX_IMPL_CONVERT(vec_uint4, vec_float4, vec_ctu)
// converts single and double precision to signed doubleword
#ifdef vec_ctsl
# undef vec_ctsl
#endif
VSX_IMPL_CONVERT(vec_dword2, vec_double2, vec_ctsl)
// __builtin_convertvector unable to convert, xvcvspsxds is missing on it
VSX_FINLINE(vec_dword2) vec_ctslo(const vec_float4& a)
{ return vec_ctsl(vec_cvfo(a)); }
// converts single and double precision to unsigned doubleword
#ifdef vec_ctul
# undef vec_ctul
#endif
VSX_IMPL_CONVERT(vec_udword2, vec_double2, vec_ctul)
// __builtin_convertvector unable to convert, xvcvspuxds is missing on it
VSX_FINLINE(vec_udword2) vec_ctulo(const vec_float4& a)
{ return vec_ctul(vec_cvfo(a)); }
#endif // CLANG VSX compatibility
/*
* Common GCC, CLANG compatibility
**/
#if defined(__GNUG__) && !defined(__IBMCPP__)
#ifdef vec_cvf
# undef vec_cvf
#endif
#define VSX_IMPL_CONV_EVEN_4_2(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ return fn2(vec_sldw(a, a, 1)); }
VSX_IMPL_CONV_EVEN_4_2(vec_double2, vec_float4, vec_cvf, vec_cvfo)
VSX_IMPL_CONV_EVEN_4_2(vec_double2, vec_int4, vec_ctd, vec_ctdo)
VSX_IMPL_CONV_EVEN_4_2(vec_double2, vec_uint4, vec_ctd, vec_ctdo)
VSX_IMPL_CONV_EVEN_4_2(vec_dword2, vec_float4, vec_ctsl, vec_ctslo)
VSX_IMPL_CONV_EVEN_4_2(vec_udword2, vec_float4, vec_ctul, vec_ctulo)
#define VSX_IMPL_CONV_EVEN_2_4(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ \
rt v4 = fn2(a); \
return vec_sldw(v4, v4, 3); \
}
VSX_IMPL_CONV_EVEN_2_4(vec_float4, vec_double2, vec_cvf, vec_cvfo)
VSX_IMPL_CONV_EVEN_2_4(vec_float4, vec_dword2, vec_ctf, vec_ctfo)
VSX_IMPL_CONV_EVEN_2_4(vec_float4, vec_udword2, vec_ctf, vec_ctfo)
VSX_IMPL_CONV_EVEN_2_4(vec_int4, vec_double2, vec_cts, vec_ctso)
VSX_IMPL_CONV_EVEN_2_4(vec_uint4, vec_double2, vec_ctu, vec_ctuo)
#endif // Common GCC, CLANG compatibility
/*
* XLC VSX compatibility
**/
#if defined(__IBMCPP__)
// vector population count
#define vec_popcntu vec_popcnt
// overload and redirect wih setting second arg to zero
// since we only support conversions without the second arg
#define VSX_IMPL_OVERLOAD_Z2(rt, rg, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) { return fnm(a, 0); }
VSX_IMPL_OVERLOAD_Z2(vec_double2, vec_int4, vec_ctd)
VSX_IMPL_OVERLOAD_Z2(vec_double2, vec_uint4, vec_ctd)
VSX_IMPL_OVERLOAD_Z2(vec_double2, vec_dword2, vec_ctd)
VSX_IMPL_OVERLOAD_Z2(vec_double2, vec_udword2, vec_ctd)
VSX_IMPL_OVERLOAD_Z2(vec_float4, vec_int4, vec_ctf)
VSX_IMPL_OVERLOAD_Z2(vec_float4, vec_uint4, vec_ctf)
VSX_IMPL_OVERLOAD_Z2(vec_float4, vec_dword2, vec_ctf)
VSX_IMPL_OVERLOAD_Z2(vec_float4, vec_udword2, vec_ctf)
VSX_IMPL_OVERLOAD_Z2(vec_int4, vec_double2, vec_cts)
VSX_IMPL_OVERLOAD_Z2(vec_int4, vec_float4, vec_cts)
VSX_IMPL_OVERLOAD_Z2(vec_uint4, vec_double2, vec_ctu)
VSX_IMPL_OVERLOAD_Z2(vec_uint4, vec_float4, vec_ctu)
VSX_IMPL_OVERLOAD_Z2(vec_dword2, vec_double2, vec_ctsl)
VSX_IMPL_OVERLOAD_Z2(vec_dword2, vec_float4, vec_ctsl)
VSX_IMPL_OVERLOAD_Z2(vec_udword2, vec_double2, vec_ctul)
VSX_IMPL_OVERLOAD_Z2(vec_udword2, vec_float4, vec_ctul)
// fixme: implement conversions of odd-numbered elements in a dirty way
// since xlc doesn't support VSX registers operand in inline asm.
#define VSX_IMPL_CONV_ODD_4_2(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a) { return fn2(vec_sldw(a, a, 3)); }
VSX_IMPL_CONV_ODD_4_2(vec_double2, vec_float4, vec_cvfo, vec_cvf)
VSX_IMPL_CONV_ODD_4_2(vec_double2, vec_int4, vec_ctdo, vec_ctd)
VSX_IMPL_CONV_ODD_4_2(vec_double2, vec_uint4, vec_ctdo, vec_ctd)
VSX_IMPL_CONV_ODD_4_2(vec_dword2, vec_float4, vec_ctslo, vec_ctsl)
VSX_IMPL_CONV_ODD_4_2(vec_udword2, vec_float4, vec_ctulo, vec_ctul)
#define VSX_IMPL_CONV_ODD_2_4(rt, rg, fnm, fn2) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ \
rt v4 = fn2(a); \
return vec_sldw(v4, v4, 1); \
}
VSX_IMPL_CONV_ODD_2_4(vec_float4, vec_double2, vec_cvfo, vec_cvf)
VSX_IMPL_CONV_ODD_2_4(vec_float4, vec_dword2, vec_ctfo, vec_ctf)
VSX_IMPL_CONV_ODD_2_4(vec_float4, vec_udword2, vec_ctfo, vec_ctf)
VSX_IMPL_CONV_ODD_2_4(vec_int4, vec_double2, vec_ctso, vec_cts)
VSX_IMPL_CONV_ODD_2_4(vec_uint4, vec_double2, vec_ctuo, vec_ctu)
#endif // XLC VSX compatibility
// ignore GCC warning that casued by -Wunused-but-set-variable in rare cases
#if defined(__GNUG__) && !defined(__clang__)
# define VSX_UNUSED(Tvec) Tvec __attribute__((__unused__))
#else // CLANG, XLC
# define VSX_UNUSED(Tvec) Tvec
#endif
// gcc can find his way in casting log int and XLC, CLANG ambiguous
#if defined(__clang__) || defined(__IBMCPP__)
VSX_FINLINE(vec_udword2) vec_splats(uint64 v)
{ return vec_splats((unsigned long long) v); }
VSX_FINLINE(vec_dword2) vec_splats(int64 v)
{ return vec_splats((long long) v); }
VSX_FINLINE(vec_udword2) vec_promote(uint64 a, int b)
{ return vec_promote((unsigned long long) a, b); }
VSX_FINLINE(vec_dword2) vec_promote(int64 a, int b)
{ return vec_promote((long long) a, b); }
#endif
/*
* implement vsx_ld(offset, pointer), vsx_st(vector, offset, pointer)
* load and set using offset depend on the pointer type
*
* implement vsx_ldf(offset, pointer), vsx_stf(vector, offset, pointer)
* load and set using offset depend on fixed bytes size
*
* Note: In clang vec_xl and vec_xst fails to load unaligned addresses
* so we are using vec_vsx_ld, vec_vsx_st instead
*/
#if defined(__clang__) && !defined(__IBMCPP__)
# define vsx_ldf vec_vsx_ld
# define vsx_stf vec_vsx_st
#else // GCC , XLC
# define vsx_ldf vec_xl
# define vsx_stf vec_xst
#endif
#define VSX_OFFSET(o, p) ((o) * sizeof(*(p)))
#define vsx_ld(o, p) vsx_ldf(VSX_OFFSET(o, p), p)
#define vsx_st(v, o, p) vsx_stf(v, VSX_OFFSET(o, p), p)
/*
* implement vsx_ld2(offset, pointer), vsx_st2(vector, offset, pointer) to load and store double words
* In GCC vec_xl and vec_xst it maps to vec_vsx_ld, vec_vsx_st which doesn't support long long
* and in CLANG we are using vec_vsx_ld, vec_vsx_st because vec_xl, vec_xst fails to load unaligned addresses
*
* In XLC vec_xl and vec_xst fail to cast int64(long int) to long long
*/
#if (defined(__GNUG__) || defined(__clang__)) && !defined(__IBMCPP__)
VSX_FINLINE(vec_udword2) vsx_ld2(long o, const uint64* p)
{ return vec_udword2_c(vsx_ldf(VSX_OFFSET(o, p), (unsigned int*)p)); }
VSX_FINLINE(vec_dword2) vsx_ld2(long o, const int64* p)
{ return vec_dword2_c(vsx_ldf(VSX_OFFSET(o, p), (int*)p)); }
VSX_FINLINE(void) vsx_st2(const vec_udword2& vec, long o, uint64* p)
{ vsx_stf(vec_uint4_c(vec), VSX_OFFSET(o, p), (unsigned int*)p); }
VSX_FINLINE(void) vsx_st2(const vec_dword2& vec, long o, int64* p)
{ vsx_stf(vec_int4_c(vec), VSX_OFFSET(o, p), (int*)p); }
#else // XLC
VSX_FINLINE(vec_udword2) vsx_ld2(long o, const uint64* p)
{ return vsx_ldf(VSX_OFFSET(o, p), (unsigned long long*)p); }
VSX_FINLINE(vec_dword2) vsx_ld2(long o, const int64* p)
{ return vsx_ldf(VSX_OFFSET(o, p), (long long*)p); }
VSX_FINLINE(void) vsx_st2(const vec_udword2& vec, long o, uint64* p)
{ vsx_stf(vec, VSX_OFFSET(o, p), (unsigned long long*)p); }
VSX_FINLINE(void) vsx_st2(const vec_dword2& vec, long o, int64* p)
{ vsx_stf(vec, VSX_OFFSET(o, p), (long long*)p); }
#endif
// load 4 unsigned bytes into uint4 vector
#define vec_ld_buw(p) vec_uint4_set((p)[0], (p)[1], (p)[2], (p)[3])
// load 4 signed bytes into int4 vector
#define vec_ld_bsw(p) vec_int4_set((p)[0], (p)[1], (p)[2], (p)[3])
// load 4 unsigned bytes into float vector
#define vec_ld_bps(p) vec_ctf(vec_ld_buw(p), 0)
// Store lower 8 byte
#define vec_st_l8(v, p) *((uint64*)(p)) = vec_extract(vec_udword2_c(v), 0)
// Store higher 8 byte
#define vec_st_h8(v, p) *((uint64*)(p)) = vec_extract(vec_udword2_c(v), 1)
/*
* vec_ld_l8(ptr) -> Load 64-bits of integer data to lower part
* vec_ldz_l8(ptr) -> Load 64-bits of integer data to lower part and zero upper part
**/
#define VSX_IMPL_LOAD_L8(Tvec, Tp) \
VSX_FINLINE(Tvec) vec_ld_l8(const Tp *p) \
{ return ((Tvec)vec_promote(*((uint64*)p), 0)); } \
VSX_FINLINE(Tvec) vec_ldz_l8(const Tp *p) \
{ \
/* TODO: try (Tvec)(vec_udword2{*((uint64*)p), 0}) */ \
static const vec_bdword2 mask = {0xFFFFFFFFFFFFFFFF, 0x0000000000000000}; \
return vec_and(vec_ld_l8(p), (Tvec)mask); \
}
VSX_IMPL_LOAD_L8(vec_uchar16, uchar)
VSX_IMPL_LOAD_L8(vec_char16, schar)
VSX_IMPL_LOAD_L8(vec_ushort8, ushort)
VSX_IMPL_LOAD_L8(vec_short8, short)
VSX_IMPL_LOAD_L8(vec_uint4, uint)
VSX_IMPL_LOAD_L8(vec_int4, int)
VSX_IMPL_LOAD_L8(vec_float4, float)
VSX_IMPL_LOAD_L8(vec_udword2, uint64)
VSX_IMPL_LOAD_L8(vec_dword2, int64)
VSX_IMPL_LOAD_L8(vec_double2, double)
// logical not
#define vec_not(a) vec_nor(a, a)
// power9 yaya
// not equal
#ifndef vec_cmpne
# define vec_cmpne(a, b) vec_not(vec_cmpeq(a, b))
#endif
// absoulte difference
#ifndef vec_absd
# define vec_absd(a, b) vec_sub(vec_max(a, b), vec_min(a, b))
#endif
/*
* Implement vec_unpacklu and vec_unpackhu
* since vec_unpackl, vec_unpackh only support signed integers
**/
#define VSX_IMPL_UNPACKU(rt, rg, zero) \
VSX_FINLINE(rt) vec_unpacklu(const rg& a) \
{ return reinterpret_cast<rt>(vec_mergel(a, zero)); } \
VSX_FINLINE(rt) vec_unpackhu(const rg& a) \
{ return reinterpret_cast<rt>(vec_mergeh(a, zero)); }
VSX_IMPL_UNPACKU(vec_ushort8, vec_uchar16, vec_uchar16_z)
VSX_IMPL_UNPACKU(vec_uint4, vec_ushort8, vec_ushort8_z)
VSX_IMPL_UNPACKU(vec_udword2, vec_uint4, vec_uint4_z)
/*
* Implement vec_mergesqe and vec_mergesqo
* Merges the sequence values of even and odd elements of two vectors
*/
#define VSX_IMPL_PERM(rt, fnm, ...) \
VSX_FINLINE(rt) fnm(const rt& a, const rt& b) \
{ static const vec_uchar16 perm = {__VA_ARGS__}; return vec_perm(a, b, perm); }
// 16
#define perm16_mergesqe 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
#define perm16_mergesqo 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31
VSX_IMPL_PERM(vec_uchar16, vec_mergesqe, perm16_mergesqe)
VSX_IMPL_PERM(vec_uchar16, vec_mergesqo, perm16_mergesqo)
VSX_IMPL_PERM(vec_char16, vec_mergesqe, perm16_mergesqe)
VSX_IMPL_PERM(vec_char16, vec_mergesqo, perm16_mergesqo)
// 8
#define perm8_mergesqe 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29
#define perm8_mergesqo 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31
VSX_IMPL_PERM(vec_ushort8, vec_mergesqe, perm8_mergesqe)
VSX_IMPL_PERM(vec_ushort8, vec_mergesqo, perm8_mergesqo)
VSX_IMPL_PERM(vec_short8, vec_mergesqe, perm8_mergesqe)
VSX_IMPL_PERM(vec_short8, vec_mergesqo, perm8_mergesqo)
// 4
#define perm4_mergesqe 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27
#define perm4_mergesqo 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
VSX_IMPL_PERM(vec_uint4, vec_mergesqe, perm4_mergesqe)
VSX_IMPL_PERM(vec_uint4, vec_mergesqo, perm4_mergesqo)
VSX_IMPL_PERM(vec_int4, vec_mergesqe, perm4_mergesqe)
VSX_IMPL_PERM(vec_int4, vec_mergesqo, perm4_mergesqo)
VSX_IMPL_PERM(vec_float4, vec_mergesqe, perm4_mergesqe)
VSX_IMPL_PERM(vec_float4, vec_mergesqo, perm4_mergesqo)
// 2
VSX_REDIRECT_2RG(vec_double2, vec_double2, vec_mergesqe, vec_mergeh)
VSX_REDIRECT_2RG(vec_double2, vec_double2, vec_mergesqo, vec_mergel)
VSX_REDIRECT_2RG(vec_dword2, vec_dword2, vec_mergesqe, vec_mergeh)
VSX_REDIRECT_2RG(vec_dword2, vec_dword2, vec_mergesqo, vec_mergel)
VSX_REDIRECT_2RG(vec_udword2, vec_udword2, vec_mergesqe, vec_mergeh)
VSX_REDIRECT_2RG(vec_udword2, vec_udword2, vec_mergesqo, vec_mergel)
/*
* Implement vec_mergesqh and vec_mergesql
* Merges the sequence most and least significant halves of two vectors
*/
#define VSX_IMPL_MERGESQHL(Tvec) \
VSX_FINLINE(Tvec) vec_mergesqh(const Tvec& a, const Tvec& b) \
{ return (Tvec)vec_mergeh(vec_udword2_c(a), vec_udword2_c(b)); } \
VSX_FINLINE(Tvec) vec_mergesql(const Tvec& a, const Tvec& b) \
{ return (Tvec)vec_mergel(vec_udword2_c(a), vec_udword2_c(b)); }
VSX_IMPL_MERGESQHL(vec_uchar16)
VSX_IMPL_MERGESQHL(vec_char16)
VSX_IMPL_MERGESQHL(vec_ushort8)
VSX_IMPL_MERGESQHL(vec_short8)
VSX_IMPL_MERGESQHL(vec_uint4)
VSX_IMPL_MERGESQHL(vec_int4)
VSX_IMPL_MERGESQHL(vec_float4)
VSX_REDIRECT_2RG(vec_udword2, vec_udword2, vec_mergesqh, vec_mergeh)
VSX_REDIRECT_2RG(vec_udword2, vec_udword2, vec_mergesql, vec_mergel)
VSX_REDIRECT_2RG(vec_dword2, vec_dword2, vec_mergesqh, vec_mergeh)
VSX_REDIRECT_2RG(vec_dword2, vec_dword2, vec_mergesql, vec_mergel)
VSX_REDIRECT_2RG(vec_double2, vec_double2, vec_mergesqh, vec_mergeh)
VSX_REDIRECT_2RG(vec_double2, vec_double2, vec_mergesql, vec_mergel)
// 2 and 4 channels interleave for all types except 2 lanes
#define VSX_IMPL_ST_INTERLEAVE(Tp, Tvec) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, Tp* ptr) \
{ \
vsx_stf(vec_mergeh(a, b), 0, ptr); \
vsx_stf(vec_mergel(a, b), 16, ptr); \
} \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, const Tvec& d, Tp* ptr) \
{ \
Tvec ac = vec_mergeh(a, c); \
Tvec bd = vec_mergeh(b, d); \
vsx_stf(vec_mergeh(ac, bd), 0, ptr); \
vsx_stf(vec_mergel(ac, bd), 16, ptr); \
ac = vec_mergel(a, c); \
bd = vec_mergel(b, d); \
vsx_stf(vec_mergeh(ac, bd), 32, ptr); \
vsx_stf(vec_mergel(ac, bd), 48, ptr); \
}
VSX_IMPL_ST_INTERLEAVE(uchar, vec_uchar16)
VSX_IMPL_ST_INTERLEAVE(schar, vec_char16)
VSX_IMPL_ST_INTERLEAVE(ushort, vec_ushort8)
VSX_IMPL_ST_INTERLEAVE(short, vec_short8)
VSX_IMPL_ST_INTERLEAVE(uint, vec_uint4)
VSX_IMPL_ST_INTERLEAVE(int, vec_int4)
VSX_IMPL_ST_INTERLEAVE(float, vec_float4)
// 2 and 4 channels deinterleave for 16 lanes
#define VSX_IMPL_ST_DINTERLEAVE_8(Tp, Tvec) \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b) \
{ \
Tvec v0 = vsx_ld(0, ptr); \
Tvec v1 = vsx_ld(16, ptr); \
a = vec_mergesqe(v0, v1); \
b = vec_mergesqo(v0, v1); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, \
Tvec& c, Tvec& d) \
{ \
Tvec v0 = vsx_ld(0, ptr); \
Tvec v1 = vsx_ld(16, ptr); \
Tvec v2 = vsx_ld(32, ptr); \
Tvec v3 = vsx_ld(48, ptr); \
Tvec m0 = vec_mergesqe(v0, v1); \
Tvec m1 = vec_mergesqe(v2, v3); \
a = vec_mergesqe(m0, m1); \
c = vec_mergesqo(m0, m1); \
m0 = vec_mergesqo(v0, v1); \
m1 = vec_mergesqo(v2, v3); \
b = vec_mergesqe(m0, m1); \
d = vec_mergesqo(m0, m1); \
}
VSX_IMPL_ST_DINTERLEAVE_8(uchar, vec_uchar16)
VSX_IMPL_ST_DINTERLEAVE_8(schar, vec_char16)
// 2 and 4 channels deinterleave for 8 lanes
#define VSX_IMPL_ST_DINTERLEAVE_16(Tp, Tvec) \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b) \
{ \
Tvec v0 = vsx_ld(0, ptr); \
Tvec v1 = vsx_ld(8, ptr); \
a = vec_mergesqe(v0, v1); \
b = vec_mergesqo(v0, v1); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, \
Tvec& c, Tvec& d) \
{ \
Tvec v0 = vsx_ld(0, ptr); \
Tvec v1 = vsx_ld(8, ptr); \
Tvec m0 = vec_mergeh(v0, v1); \
Tvec m1 = vec_mergel(v0, v1); \
Tvec ab0 = vec_mergeh(m0, m1); \
Tvec cd0 = vec_mergel(m0, m1); \
v0 = vsx_ld(16, ptr); \
v1 = vsx_ld(24, ptr); \
m0 = vec_mergeh(v0, v1); \
m1 = vec_mergel(v0, v1); \
Tvec ab1 = vec_mergeh(m0, m1); \
Tvec cd1 = vec_mergel(m0, m1); \
a = vec_mergesqh(ab0, ab1); \
b = vec_mergesql(ab0, ab1); \
c = vec_mergesqh(cd0, cd1); \
d = vec_mergesql(cd0, cd1); \
}
VSX_IMPL_ST_DINTERLEAVE_16(ushort, vec_ushort8)
VSX_IMPL_ST_DINTERLEAVE_16(short, vec_short8)
// 2 and 4 channels deinterleave for 4 lanes
#define VSX_IMPL_ST_DINTERLEAVE_32(Tp, Tvec) \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b) \
{ \
a = vsx_ld(0, ptr); \
b = vsx_ld(4, ptr); \
Tvec m0 = vec_mergeh(a, b); \
Tvec m1 = vec_mergel(a, b); \
a = vec_mergeh(m0, m1); \
b = vec_mergel(m0, m1); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, \
Tvec& c, Tvec& d) \
{ \
Tvec v0 = vsx_ld(0, ptr); \
Tvec v1 = vsx_ld(4, ptr); \
Tvec v2 = vsx_ld(8, ptr); \
Tvec v3 = vsx_ld(12, ptr); \
Tvec m0 = vec_mergeh(v0, v2); \
Tvec m1 = vec_mergeh(v1, v3); \
a = vec_mergeh(m0, m1); \
b = vec_mergel(m0, m1); \
m0 = vec_mergel(v0, v2); \
m1 = vec_mergel(v1, v3); \
c = vec_mergeh(m0, m1); \
d = vec_mergel(m0, m1); \
}
VSX_IMPL_ST_DINTERLEAVE_32(uint, vec_uint4)
VSX_IMPL_ST_DINTERLEAVE_32(int, vec_int4)
VSX_IMPL_ST_DINTERLEAVE_32(float, vec_float4)
// 2 and 4 channels interleave and deinterleave for 2 lanes
#define VSX_IMPL_ST_D_INTERLEAVE_64(Tp, Tvec, ld_func, st_func) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, Tp* ptr) \
{ \
st_func(vec_mergeh(a, b), 0, ptr); \
st_func(vec_mergel(a, b), 2, ptr); \
} \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, const Tvec& d, Tp* ptr) \
{ \
st_func(vec_mergeh(a, b), 0, ptr); \
st_func(vec_mergeh(c, d), 2, ptr); \
st_func(vec_mergel(a, b), 4, ptr); \
st_func(vec_mergel(c, d), 6, ptr); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b) \
{ \
Tvec m0 = ld_func(0, ptr); \
Tvec m1 = ld_func(2, ptr); \
a = vec_mergeh(m0, m1); \
b = vec_mergel(m0, m1); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, \
Tvec& c, Tvec& d) \
{ \
Tvec v0 = ld_func(0, ptr); \
Tvec v1 = ld_func(2, ptr); \
Tvec v2 = ld_func(4, ptr); \
Tvec v3 = ld_func(6, ptr); \
a = vec_mergeh(v0, v2); \
b = vec_mergel(v0, v2); \
c = vec_mergeh(v1, v3); \
d = vec_mergel(v1, v3); \
}
VSX_IMPL_ST_D_INTERLEAVE_64(int64, vec_dword2, vsx_ld2, vsx_st2)
VSX_IMPL_ST_D_INTERLEAVE_64(uint64, vec_udword2, vsx_ld2, vsx_st2)
VSX_IMPL_ST_D_INTERLEAVE_64(double, vec_double2, vsx_ld, vsx_st)
/* 3 channels */
#define VSX_IMPL_ST_INTERLEAVE_3CH_16(Tp, Tvec) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, Tp* ptr) \
{ \
static const vec_uchar16 a12 = {0, 16, 0, 1, 17, 0, 2, 18, 0, 3, 19, 0, 4, 20, 0, 5}; \
static const vec_uchar16 a123 = {0, 1, 16, 3, 4, 17, 6, 7, 18, 9, 10, 19, 12, 13, 20, 15}; \
vsx_st(vec_perm(vec_perm(a, b, a12), c, a123), 0, ptr); \
static const vec_uchar16 b12 = {21, 0, 6, 22, 0, 7, 23, 0, 8, 24, 0, 9, 25, 0, 10, 26}; \
static const vec_uchar16 b123 = {0, 21, 2, 3, 22, 5, 6, 23, 8, 9, 24, 11, 12, 25, 14, 15}; \
vsx_st(vec_perm(vec_perm(a, b, b12), c, b123), 16, ptr); \
static const vec_uchar16 c12 = {0, 11, 27, 0, 12, 28, 0, 13, 29, 0, 14, 30, 0, 15, 31, 0}; \
static const vec_uchar16 c123 = {26, 1, 2, 27, 4, 5, 28, 7, 8, 29, 10, 11, 30, 13, 14, 31}; \
vsx_st(vec_perm(vec_perm(a, b, c12), c, c123), 32, ptr); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, Tvec& c) \
{ \
Tvec v1 = vsx_ld(0, ptr); \
Tvec v2 = vsx_ld(16, ptr); \
Tvec v3 = vsx_ld(32, ptr); \
static const vec_uchar16 a12_perm = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0, 0, 0, 0, 0}; \
static const vec_uchar16 a123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 20, 23, 26, 29}; \
a = vec_perm(vec_perm(v1, v2, a12_perm), v3, a123_perm); \
static const vec_uchar16 b12_perm = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 0, 0, 0, 0, 0}; \
static const vec_uchar16 b123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 21, 24, 27, 30}; \
b = vec_perm(vec_perm(v1, v2, b12_perm), v3, b123_perm); \
static const vec_uchar16 c12_perm = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0, 0, 0, 0, 0, 0}; \
static const vec_uchar16 c123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 19, 22, 25, 28, 31}; \
c = vec_perm(vec_perm(v1, v2, c12_perm), v3, c123_perm); \
}
VSX_IMPL_ST_INTERLEAVE_3CH_16(uchar, vec_uchar16)
VSX_IMPL_ST_INTERLEAVE_3CH_16(schar, vec_char16)
#define VSX_IMPL_ST_INTERLEAVE_3CH_8(Tp, Tvec) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, Tp* ptr) \
{ \
static const vec_uchar16 a12 = {0, 1, 16, 17, 0, 0, 2, 3, 18, 19, 0, 0, 4, 5, 20, 21}; \
static const vec_uchar16 a123 = {0, 1, 2, 3, 16, 17, 6, 7, 8, 9, 18, 19, 12, 13, 14, 15}; \
vsx_st(vec_perm(vec_perm(a, b, a12), c, a123), 0, ptr); \
static const vec_uchar16 b12 = {0, 0, 6, 7, 22, 23, 0, 0, 8, 9, 24, 25, 0, 0, 10, 11}; \
static const vec_uchar16 b123 = {20, 21, 2, 3, 4, 5, 22, 23, 8, 9, 10, 11, 24, 25, 14, 15}; \
vsx_st(vec_perm(vec_perm(a, b, b12), c, b123), 8, ptr); \
static const vec_uchar16 c12 = {26, 27, 0, 0, 12, 13, 28, 29, 0, 0, 14, 15, 30, 31, 0, 0}; \
static const vec_uchar16 c123 = {0, 1, 26, 27, 4, 5, 6, 7, 28, 29, 10, 11, 12, 13, 30, 31}; \
vsx_st(vec_perm(vec_perm(a, b, c12), c, c123), 16, ptr); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, Tvec& c) \
{ \
Tvec v1 = vsx_ld(0, ptr); \
Tvec v2 = vsx_ld(8, ptr); \
Tvec v3 = vsx_ld(16, ptr); \
static const vec_uchar16 a12_perm = {0, 1, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 0, 0, 0, 0}; \
static const vec_uchar16 a123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 26, 27}; \
a = vec_perm(vec_perm(v1, v2, a12_perm), v3, a123_perm); \
static const vec_uchar16 b12_perm = {2, 3, 8, 9, 14, 15, 20, 21, 26, 27, 0, 0, 0, 0, 0, 0}; \
static const vec_uchar16 b123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 22, 23, 28, 29}; \
b = vec_perm(vec_perm(v1, v2, b12_perm), v3, b123_perm); \
static const vec_uchar16 c12_perm = {4, 5, 10, 11, 16, 17, 22, 23, 28, 29, 0, 0, 0, 0, 0, 0}; \
static const vec_uchar16 c123_perm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 24, 25, 30, 31}; \
c = vec_perm(vec_perm(v1, v2, c12_perm), v3, c123_perm); \
}
VSX_IMPL_ST_INTERLEAVE_3CH_8(ushort, vec_ushort8)
VSX_IMPL_ST_INTERLEAVE_3CH_8(short, vec_short8)
#define VSX_IMPL_ST_INTERLEAVE_3CH_4(Tp, Tvec) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, Tp* ptr) \
{ \
Tvec hbc = vec_mergeh(b, c); \
static const vec_uchar16 ahbc = {0, 1, 2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 4, 5, 6, 7}; \
vsx_st(vec_perm(a, hbc, ahbc), 0, ptr); \
Tvec lab = vec_mergel(a, b); \
vsx_st(vec_sld(lab, hbc, 8), 4, ptr); \
static const vec_uchar16 clab = {8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 12, 13, 14, 15};\
vsx_st(vec_perm(c, lab, clab), 8, ptr); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, Tvec& b, Tvec& c) \
{ \
Tvec v1 = vsx_ld(0, ptr); \
Tvec v2 = vsx_ld(4, ptr); \
Tvec v3 = vsx_ld(8, ptr); \
static const vec_uchar16 flp = {0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 28, 29, 30, 31}; \
a = vec_perm(v1, vec_sld(v3, v2, 8), flp); \
static const vec_uchar16 flp2 = {28, 29, 30, 31, 0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19}; \
b = vec_perm(v2, vec_sld(v1, v3, 8), flp2); \
c = vec_perm(vec_sld(v2, v1, 8), v3, flp); \
}
VSX_IMPL_ST_INTERLEAVE_3CH_4(uint, vec_uint4)
VSX_IMPL_ST_INTERLEAVE_3CH_4(int, vec_int4)
VSX_IMPL_ST_INTERLEAVE_3CH_4(float, vec_float4)
#define VSX_IMPL_ST_INTERLEAVE_3CH_2(Tp, Tvec, ld_func, st_func) \
VSX_FINLINE(void) vec_st_interleave(const Tvec& a, const Tvec& b, \
const Tvec& c, Tp* ptr) \
{ \
st_func(vec_mergeh(a, b), 0, ptr); \
st_func(vec_permi(c, a, 1), 2, ptr); \
st_func(vec_mergel(b, c), 4, ptr); \
} \
VSX_FINLINE(void) vec_ld_deinterleave(const Tp* ptr, Tvec& a, \
Tvec& b, Tvec& c) \
{ \
Tvec v1 = ld_func(0, ptr); \
Tvec v2 = ld_func(2, ptr); \
Tvec v3 = ld_func(4, ptr); \
a = vec_permi(v1, v2, 1); \
b = vec_permi(v1, v3, 2); \
c = vec_permi(v2, v3, 1); \
}
VSX_IMPL_ST_INTERLEAVE_3CH_2(int64, vec_dword2, vsx_ld2, vsx_st2)
VSX_IMPL_ST_INTERLEAVE_3CH_2(uint64, vec_udword2, vsx_ld2, vsx_st2)
VSX_IMPL_ST_INTERLEAVE_3CH_2(double, vec_double2, vsx_ld, vsx_st)
#endif // CV_VSX
//! @}
#endif // OPENCV_HAL_VSX_UTILS_HPP