401 lines
16 KiB
C++
401 lines
16 KiB
C++
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
|
|
// License: Boost Software License See LICENSE.txt for the full license.
|
|
|
|
#include <dlib/statistics.h>
|
|
#include <dlib/sparse_vector.h>
|
|
#include <map>
|
|
|
|
#include "tester.h"
|
|
|
|
namespace
|
|
{
|
|
using namespace test;
|
|
using namespace dlib;
|
|
using namespace std;
|
|
|
|
logger dlog("test.cca");
|
|
|
|
dlib::rand rnd;
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
std::vector<std::map<unsigned long, double> > make_really_big_test_matrix (
|
|
)
|
|
{
|
|
std::vector<std::map<unsigned long,double> > temp(30000);
|
|
for (unsigned long i = 0; i < temp.size(); ++i)
|
|
{
|
|
for (int k = 0; k < 30; ++k)
|
|
temp[i][rnd.get_random_32bit_number()%10000] = 1;
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<std::map<unsigned long, T> > mat_to_sparse (
|
|
const matrix<T>& A
|
|
)
|
|
{
|
|
std::vector<std::map<unsigned long,T> > temp(A.nr());
|
|
for (long r = 0; r < A.nr(); ++r)
|
|
{
|
|
for (long c = 0; c < A.nc(); ++c)
|
|
{
|
|
temp[r][c] = A(r,c);
|
|
}
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <typename EXP>
|
|
matrix<typename EXP::type> rm_zeros (
|
|
const matrix_exp<EXP>& m
|
|
)
|
|
{
|
|
// Do this to avoid trying to correlate super small numbers that are really just
|
|
// zero. Doing this avoids some potential false alarms in the unit tests below.
|
|
return round_zeros(m, max(abs(m))*1e-14);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void check_correlation (
|
|
matrix<double> L,
|
|
matrix<double> R,
|
|
const matrix<double>& Ltrans,
|
|
const matrix<double>& Rtrans,
|
|
const matrix<double,0,1>& correlations
|
|
)
|
|
{
|
|
// apply the transforms
|
|
L = L*Ltrans;
|
|
R = R*Rtrans;
|
|
|
|
// compute the real correlation values. Store them in A.
|
|
matrix<double> A = compute_correlations(L, R);
|
|
|
|
for (long i = 0; i < correlations.size(); ++i)
|
|
{
|
|
// compare what the measured correlation values are (in A) to the
|
|
// predicted values.
|
|
cout << "error: "<< A(i) - correlations(i);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void test_cca3()
|
|
{
|
|
print_spinner();
|
|
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
|
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long n2 = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long rank2 = rank + rnd.get_random_32bit_number()%5;
|
|
|
|
dlog << LINFO << "m: " << m;
|
|
dlog << LINFO << "n: " << n;
|
|
dlog << LINFO << "n2: " << n2;
|
|
dlog << LINFO << "rank: " << rank;
|
|
dlog << LINFO << "rank2: " << rank2;
|
|
|
|
|
|
matrix<double> L = randm(m,rank, rnd)*randm(rank,n, rnd);
|
|
//matrix<double> R = randm(m,rank, rnd)*randm(rank,n2, rnd);
|
|
matrix<double> R = L*randm(n,n2);
|
|
//matrix<double> L = randm(m,n, rnd);
|
|
//matrix<double> R = randm(m,n2, rnd);
|
|
|
|
matrix<double> Ltrans, Rtrans;
|
|
matrix<double,0,1> correlations;
|
|
|
|
{
|
|
correlations = cca(L, R, Ltrans, Rtrans, min(m,n), max(n,n2));
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST_MSG(corr_error < 1e-13, Ltrans << "\n\n" << Rtrans);
|
|
|
|
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
|
dlog << LINFO << "trans_error: "<< trans_error;
|
|
DLIB_TEST(trans_error < 1e-10);
|
|
}
|
|
{
|
|
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, min(m,n), max(n,n2)+6, 4);
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
dlog << LINFO << "computed cors: " << trans(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)));
|
|
|
|
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
|
dlog << LINFO << "trans_error: "<< trans_error;
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST_MSG(corr_error < 1e-13, Ltrans << "\n\n" << Rtrans);
|
|
|
|
DLIB_TEST(trans_error < 1e-10);
|
|
}
|
|
|
|
dlog << LINFO << "*****************************************************";
|
|
}
|
|
|
|
void test_cca2()
|
|
{
|
|
print_spinner();
|
|
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
|
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long n2 = rank + rnd.get_random_32bit_number()%15;
|
|
|
|
dlog << LINFO << "m: " << m;
|
|
dlog << LINFO << "n: " << n;
|
|
dlog << LINFO << "n2: " << n2;
|
|
dlog << LINFO << "rank: " << rank;
|
|
|
|
|
|
matrix<double> L = randm(m,n, rnd);
|
|
matrix<double> R = randm(m,n2, rnd);
|
|
|
|
matrix<double> Ltrans, Rtrans;
|
|
matrix<double,0,1> correlations;
|
|
|
|
{
|
|
correlations = cca(L, R, Ltrans, Rtrans, min(n,n2), max(n,n2)-min(n,n2));
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
|
|
if (Ltrans.nc() > 1)
|
|
{
|
|
// The CCA projection directions are supposed to be uncorrelated for
|
|
// non-matching pairs of projections.
|
|
const double corr_rot1_error = max(abs(compute_correlations(rm_zeros(L*rotate<0,1>(Ltrans)), rm_zeros(R*Rtrans))));
|
|
dlog << LINFO << "corr_rot1_error: "<< corr_rot1_error;
|
|
DLIB_TEST(std::abs(corr_rot1_error) < 1e-10);
|
|
}
|
|
// Matching projection directions should be correlated with the amount of
|
|
// correlation indicated by the return value of cca().
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST(corr_error < 1e-13);
|
|
}
|
|
{
|
|
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, min(n,n2), max(n,n2)-min(n,n2));
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
|
|
if (Ltrans.nc() > 1)
|
|
{
|
|
// The CCA projection directions are supposed to be uncorrelated for
|
|
// non-matching pairs of projections.
|
|
const double corr_rot1_error = max(abs(compute_correlations(rm_zeros(L*rotate<0,1>(Ltrans)), rm_zeros(R*Rtrans))));
|
|
dlog << LINFO << "corr_rot1_error: "<< corr_rot1_error;
|
|
DLIB_TEST(std::abs(corr_rot1_error) < 1e-10);
|
|
}
|
|
// Matching projection directions should be correlated with the amount of
|
|
// correlation indicated by the return value of cca().
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST(corr_error < 1e-13);
|
|
}
|
|
|
|
dlog << LINFO << "*****************************************************";
|
|
}
|
|
|
|
void test_cca1()
|
|
{
|
|
print_spinner();
|
|
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
|
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
|
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
|
|
|
dlog << LINFO << "m: " << m;
|
|
dlog << LINFO << "n: " << n;
|
|
dlog << LINFO << "rank: " << rank;
|
|
|
|
matrix<double> T = randm(n,n, rnd);
|
|
|
|
matrix<double> L = randm(m,rank, rnd)*randm(rank,n, rnd);
|
|
//matrix<double> L = randm(m,n, rnd);
|
|
matrix<double> R = L*T;
|
|
|
|
matrix<double> Ltrans, Rtrans;
|
|
matrix<double,0,1> correlations;
|
|
|
|
{
|
|
correlations = cca(L, R, Ltrans, Rtrans, rank);
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
if (Ltrans.nc() > 1)
|
|
{
|
|
// The CCA projection directions are supposed to be uncorrelated for
|
|
// non-matching pairs of projections.
|
|
const double corr_rot1_error = max(abs(compute_correlations(rm_zeros(L*rotate<0,1>(Ltrans)), rm_zeros(R*Rtrans))));
|
|
dlog << LINFO << "corr_rot1_error: "<< corr_rot1_error;
|
|
DLIB_TEST(std::abs(corr_rot1_error) < 1e-10);
|
|
}
|
|
// Matching projection directions should be correlated with the amount of
|
|
// correlation indicated by the return value of cca().
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST(corr_error < 1e-13);
|
|
|
|
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
|
dlog << LINFO << "trans_error: "<< trans_error;
|
|
DLIB_TEST(trans_error < 1e-10);
|
|
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
}
|
|
{
|
|
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, rank);
|
|
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
|
if (Ltrans.nc() > 1)
|
|
{
|
|
// The CCA projection directions are supposed to be uncorrelated for
|
|
// non-matching pairs of projections.
|
|
const double corr_rot1_error = max(abs(compute_correlations(rm_zeros(L*rotate<0,1>(Ltrans)), rm_zeros(R*Rtrans))));
|
|
dlog << LINFO << "corr_rot1_error: "<< corr_rot1_error;
|
|
DLIB_TEST(std::abs(corr_rot1_error) < 1e-10);
|
|
}
|
|
// Matching projection directions should be correlated with the amount of
|
|
// correlation indicated by the return value of cca().
|
|
const double corr_error = max(abs(compute_correlations(rm_zeros(L*Ltrans), rm_zeros(R*Rtrans)) - correlations));
|
|
dlog << LINFO << "correlation error: "<< corr_error;
|
|
DLIB_TEST(corr_error < 1e-13);
|
|
|
|
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
|
dlog << LINFO << "trans_error: "<< trans_error;
|
|
DLIB_TEST(trans_error < 1e-9);
|
|
|
|
dlog << LINFO << "correlations: "<< trans(correlations);
|
|
}
|
|
|
|
dlog << LINFO << "*****************************************************";
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void test_svd_fast(
|
|
long rank,
|
|
long m,
|
|
long n
|
|
)
|
|
{
|
|
print_spinner();
|
|
matrix<double> A = randm(m,rank,rnd)*randm(rank,n,rnd);
|
|
matrix<double> u,v;
|
|
matrix<double,0,1> w;
|
|
|
|
dlog << LINFO << "rank: "<< rank;
|
|
dlog << LINFO << "m: "<< m;
|
|
dlog << LINFO << "n: "<< n;
|
|
|
|
svd_fast(A, u, w, v, rank, 2);
|
|
DLIB_TEST(u.nr() == m);
|
|
DLIB_TEST(u.nc() == rank);
|
|
DLIB_TEST(w.nr() == rank);
|
|
DLIB_TEST(w.nc() == 1);
|
|
DLIB_TEST(v.nr() == n);
|
|
DLIB_TEST(v.nc() == rank);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-13);
|
|
svd_fast(mat_to_sparse(A), u, w, v, rank, 2);
|
|
DLIB_TEST(u.nr() == m);
|
|
DLIB_TEST(u.nc() == rank);
|
|
DLIB_TEST(w.nr() == rank);
|
|
DLIB_TEST(w.nc() == 1);
|
|
DLIB_TEST(v.nr() == n);
|
|
DLIB_TEST(v.nc() == rank);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-13);
|
|
|
|
svd_fast(A, u, w, v, rank, 0);
|
|
DLIB_TEST(u.nr() == m);
|
|
DLIB_TEST(u.nc() == rank);
|
|
DLIB_TEST(w.nr() == rank);
|
|
DLIB_TEST(w.nc() == 1);
|
|
DLIB_TEST(v.nr() == n);
|
|
DLIB_TEST(v.nc() == rank);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST_MSG(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-9,max(abs(tmp(A - u*diagm(w)*trans(v)))));
|
|
svd_fast(mat_to_sparse(A), u, w, v, rank, 0);
|
|
DLIB_TEST(u.nr() == m);
|
|
DLIB_TEST(u.nc() == rank);
|
|
DLIB_TEST(w.nr() == rank);
|
|
DLIB_TEST(w.nc() == 1);
|
|
DLIB_TEST(v.nr() == n);
|
|
DLIB_TEST(v.nc() == rank);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-10);
|
|
|
|
svd_fast(A, u, w, v, rank+5, 0);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-11);
|
|
svd_fast(mat_to_sparse(A), u, w, v, rank+5, 0);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-11);
|
|
svd_fast(A, u, w, v, rank+5, 1);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-12);
|
|
svd_fast(mat_to_sparse(A), u, w, v, rank+5, 1);
|
|
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
|
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-12);
|
|
}
|
|
|
|
void test_svd_fast()
|
|
{
|
|
for (int iter = 0; iter < 1000; ++iter)
|
|
{
|
|
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
|
const unsigned long m = rank + rnd.get_random_32bit_number()%10;
|
|
const unsigned long n = rank + rnd.get_random_32bit_number()%10;
|
|
|
|
test_svd_fast(rank, m, n);
|
|
|
|
}
|
|
test_svd_fast(1, 1, 1);
|
|
test_svd_fast(1, 2, 2);
|
|
test_svd_fast(1, 1, 2);
|
|
test_svd_fast(1, 2, 1);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
class test_cca : public tester
|
|
{
|
|
public:
|
|
test_cca (
|
|
) :
|
|
tester ("test_cca",
|
|
"Runs tests on the cca() and svd_fast() routines.")
|
|
{}
|
|
|
|
void perform_test (
|
|
)
|
|
{
|
|
for (int i = 0; i < 200; ++i)
|
|
{
|
|
test_cca1();
|
|
test_cca2();
|
|
test_cca3();
|
|
}
|
|
test_svd_fast();
|
|
}
|
|
} a;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|