124 lines
4.2 KiB
C++
124 lines
4.2 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef __CCNF_PATCH_EXPERT_h_
|
|
#define __CCNF_PATCH_EXPERT_h_
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
namespace LandmarkDetector
|
|
{
|
|
|
|
//===========================================================================
|
|
/**
|
|
A single Neuron response
|
|
*/
|
|
class CCNF_neuron{
|
|
|
|
public:
|
|
|
|
// Type of patch (0=raw,1=grad other types besides raw are not actually used now)
|
|
int neuron_type;
|
|
|
|
// scaling of weights (needed as the energy of neuron might not be 1)
|
|
double norm_weights;
|
|
|
|
// Weight bias
|
|
double bias;
|
|
|
|
// Neural weights
|
|
cv::Mat_<float> weights;
|
|
|
|
// can have neural weight dfts that are calculated on the go as needed, this allows us not to recompute
|
|
// the dft of the template each time, improving the speed of tracking
|
|
std::map<int, cv::Mat_<double> > weights_dfts;
|
|
|
|
// the alpha associated with the neuron
|
|
double alpha;
|
|
|
|
// Default constructor
|
|
CCNF_neuron(){;}
|
|
|
|
// Copy constructor
|
|
CCNF_neuron(const CCNF_neuron& other);
|
|
|
|
void Read(std::ifstream &stream);
|
|
// The im_dft, integral_img, and integral_img_sq are precomputed images for convolution speedups (they get set if passed in empty values)
|
|
void Response(cv::Mat_<float> &im, cv::Mat_<double> &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_<float> &resp);
|
|
|
|
};
|
|
|
|
//===========================================================================
|
|
/**
|
|
A CCNF patch expert
|
|
*/
|
|
class CCNF_patch_expert{
|
|
public:
|
|
|
|
// Width and height of the patch expert support region
|
|
int width;
|
|
int height;
|
|
|
|
// Collection of neurons for this patch expert
|
|
std::vector<CCNF_neuron> neurons;
|
|
|
|
// Information about the vertex features (association potentials)
|
|
std::vector<int> window_sizes;
|
|
std::vector<cv::Mat_<float> > Sigmas;
|
|
std::vector<double> betas;
|
|
|
|
// How confident we are in the patch
|
|
double patch_confidence;
|
|
|
|
// Default constructor
|
|
CCNF_patch_expert(){;}
|
|
|
|
// Copy constructor
|
|
CCNF_patch_expert(const CCNF_patch_expert& other);
|
|
|
|
void Read(std::ifstream &stream, std::vector<int> window_sizes, std::vector<std::vector<cv::Mat_<float> > > sigma_components);
|
|
|
|
// actual work (can pass in an image)
|
|
void Response(cv::Mat_<float> &area_of_interest, cv::Mat_<float> &response);
|
|
|
|
// Helper function to compute relevant sigmas
|
|
void ComputeSigmas(std::vector<cv::Mat_<float> > sigma_components, int window_size);
|
|
|
|
};
|
|
//===========================================================================
|
|
}
|
|
#endif
|