5959176921
- face validator is a retrained CNN now - starting retiring CLM-Z from OpenFace
436 lines
14 KiB
C++
436 lines
14 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "stdafx.h"
|
|
|
|
#include "Patch_experts.h"
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/core/core_c.h>
|
|
#include <opencv2/imgproc/imgproc_c.h>
|
|
|
|
// TBB includes
|
|
#include <tbb/tbb.h>
|
|
|
|
// Math includes
|
|
#define _USE_MATH_DEFINES
|
|
#include <cmath>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#include "LandmarkDetectorUtils.h"
|
|
|
|
using namespace LandmarkDetector;
|
|
|
|
// A copy constructor
|
|
Patch_experts::Patch_experts(const Patch_experts& other) : patch_scaling(other.patch_scaling), centers(other.centers), svr_expert_intensity(other.svr_expert_intensity), ccnf_expert_intensity(other.ccnf_expert_intensity)
|
|
{
|
|
|
|
// Make sure the matrices are allocated properly
|
|
this->sigma_components.resize(other.sigma_components.size());
|
|
for (size_t i = 0; i < other.sigma_components.size(); ++i)
|
|
{
|
|
this->sigma_components[i].resize(other.sigma_components[i].size());
|
|
|
|
for (size_t j = 0; j < other.sigma_components[i].size(); ++j)
|
|
{
|
|
// Make sure the matrix is copied.
|
|
this->sigma_components[i][j] = other.sigma_components[i][j].clone();
|
|
}
|
|
}
|
|
|
|
// Make sure the matrices are allocated properly
|
|
this->visibilities.resize(other.visibilities.size());
|
|
for (size_t i = 0; i < other.visibilities.size(); ++i)
|
|
{
|
|
this->visibilities[i].resize(other.visibilities[i].size());
|
|
|
|
for (size_t j = 0; j < other.visibilities[i].size(); ++j)
|
|
{
|
|
// Make sure the matrix is copied.
|
|
this->visibilities[i][j] = other.visibilities[i][j].clone();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the patch expert responses given a grayscale image.
|
|
// Additionally returns the transform from the image coordinates to the response coordinates (and vice versa).
|
|
// The computation also requires the current landmark locations to compute response around, the PDM corresponding to the desired model, and the parameters describing its instance
|
|
// Also need to provide the size of the area of interest and the desired scale of analysis
|
|
void Patch_experts::Response(vector<cv::Mat_<float> >& patch_expert_responses, cv::Matx22f& sim_ref_to_img, cv::Matx22d& sim_img_to_ref, const cv::Mat_<uchar>& grayscale_image,
|
|
const PDM& pdm, const cv::Vec6d& params_global, const cv::Mat_<double>& params_local, int window_size, int scale)
|
|
{
|
|
|
|
int view_id = GetViewIdx(params_global, scale);
|
|
|
|
int n = pdm.NumberOfPoints();
|
|
|
|
// Compute the current landmark locations (around which responses will be computed)
|
|
cv::Mat_<double> landmark_locations;
|
|
|
|
pdm.CalcShape2D(landmark_locations, params_local, params_global);
|
|
|
|
cv::Mat_<double> reference_shape;
|
|
|
|
// Initialise the reference shape on which we'll be warping
|
|
cv::Vec6d global_ref(patch_scaling[scale], 0, 0, 0, 0, 0);
|
|
|
|
// Compute the reference shape
|
|
pdm.CalcShape2D(reference_shape, params_local, global_ref);
|
|
|
|
// similarity and inverse similarity transform to and from image and reference shape
|
|
cv::Mat_<double> reference_shape_2D = (reference_shape.reshape(1, 2).t());
|
|
cv::Mat_<double> image_shape_2D = landmark_locations.reshape(1, 2).t();
|
|
|
|
sim_img_to_ref = AlignShapesWithScale(image_shape_2D, reference_shape_2D);
|
|
cv::Matx22d sim_ref_to_img_d = sim_img_to_ref.inv(cv::DECOMP_LU);
|
|
|
|
double a1 = sim_ref_to_img_d(0,0);
|
|
double b1 = -sim_ref_to_img_d(0,1);
|
|
|
|
sim_ref_to_img(0,0) = (float)sim_ref_to_img_d(0,0);
|
|
sim_ref_to_img(0,1) = (float)sim_ref_to_img_d(0,1);
|
|
sim_ref_to_img(1,0) = (float)sim_ref_to_img_d(1,0);
|
|
sim_ref_to_img(1,1) = (float)sim_ref_to_img_d(1,1);
|
|
|
|
bool use_ccnf = !this->ccnf_expert_intensity.empty();
|
|
|
|
// If using CCNF patch experts might need to precalculate Sigmas
|
|
if(use_ccnf)
|
|
{
|
|
vector<cv::Mat_<float> > sigma_components;
|
|
|
|
// Retrieve the correct sigma component size
|
|
for( size_t w_size = 0; w_size < this->sigma_components.size(); ++w_size)
|
|
{
|
|
if(!this->sigma_components[w_size].empty())
|
|
{
|
|
if(window_size*window_size == this->sigma_components[w_size][0].rows)
|
|
{
|
|
sigma_components = this->sigma_components[w_size];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go through all of the landmarks and compute the Sigma for each
|
|
for( int lmark = 0; lmark < n; lmark++)
|
|
{
|
|
// Only for visible landmarks
|
|
if(visibilities[scale][view_id].at<int>(lmark,0))
|
|
{
|
|
// Precompute sigmas if they are not computed yet
|
|
ccnf_expert_intensity[scale][view_id][lmark].ComputeSigmas(sigma_components, window_size);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// calculate the patch responses for every landmark, Actual work happens here. If openMP is turned on it is possible to do this in parallel,
|
|
// this might work well on some machines, while potentially have an adverse effect on others
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
tbb::parallel_for(0, (int)n, [&](int i){
|
|
//for(int i = 0; i < n; i++)
|
|
{
|
|
|
|
if(visibilities[scale][view_id].rows == n)
|
|
{
|
|
if(visibilities[scale][view_id].at<int>(i,0) != 0)
|
|
{
|
|
|
|
// Work out how big the area of interest has to be to get a response of window size
|
|
int area_of_interest_width;
|
|
int area_of_interest_height;
|
|
|
|
if(use_ccnf)
|
|
{
|
|
area_of_interest_width = window_size + ccnf_expert_intensity[scale][view_id][i].width - 1;
|
|
area_of_interest_height = window_size + ccnf_expert_intensity[scale][view_id][i].height - 1;
|
|
}
|
|
else
|
|
{
|
|
area_of_interest_width = window_size + svr_expert_intensity[scale][view_id][i].width - 1;
|
|
area_of_interest_height = window_size + svr_expert_intensity[scale][view_id][i].height - 1;
|
|
}
|
|
|
|
// scale and rotate to mean shape to reference frame
|
|
cv::Mat sim = (cv::Mat_<float>(2,3) << a1, -b1, landmark_locations.at<double>(i,0), b1, a1, landmark_locations.at<double>(i+n,0));
|
|
|
|
// Extract the region of interest around the current landmark location
|
|
cv::Mat_<float> area_of_interest(area_of_interest_height, area_of_interest_width);
|
|
|
|
// Using C style openCV as it does what we need
|
|
CvMat area_of_interest_o = area_of_interest;
|
|
CvMat sim_o = sim;
|
|
IplImage im_o = grayscale_image;
|
|
cvGetQuadrangleSubPix(&im_o, &area_of_interest_o, &sim_o);
|
|
|
|
// get the correct size response window
|
|
patch_expert_responses[i] = cv::Mat_<float>(window_size, window_size);
|
|
|
|
// Get intensity response either from the SVR or CCNF patch experts (prefer CCNF)
|
|
if(!ccnf_expert_intensity.empty())
|
|
{
|
|
|
|
ccnf_expert_intensity[scale][view_id][i].Response(area_of_interest, patch_expert_responses[i]);
|
|
}
|
|
else
|
|
{
|
|
svr_expert_intensity[scale][view_id][i].Response(area_of_interest, patch_expert_responses[i]);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
}
|
|
|
|
//=============================================================================
|
|
// Getting the closest view center based on orientation
|
|
int Patch_experts::GetViewIdx(const cv::Vec6d& params_global, int scale) const
|
|
{
|
|
int idx = 0;
|
|
|
|
double dbest;
|
|
|
|
for(int i = 0; i < this->nViews(scale); i++)
|
|
{
|
|
double v1 = params_global[1] - centers[scale][i][0];
|
|
double v2 = params_global[2] - centers[scale][i][1];
|
|
double v3 = params_global[3] - centers[scale][i][2];
|
|
|
|
double d = v1*v1 + v2*v2 + v3*v3;
|
|
|
|
if(i == 0 || d < dbest)
|
|
{
|
|
dbest = d;
|
|
idx = i;
|
|
}
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
void Patch_experts::Read(vector<string> intensity_svr_expert_locations, vector<string> intensity_ccnf_expert_locations)
|
|
{
|
|
|
|
// initialise the SVR intensity patch expert parameters
|
|
int num_intensity_svr = intensity_svr_expert_locations.size();
|
|
centers.resize(num_intensity_svr);
|
|
visibilities.resize(num_intensity_svr);
|
|
patch_scaling.resize(num_intensity_svr);
|
|
|
|
svr_expert_intensity.resize(num_intensity_svr);
|
|
|
|
// Reading in SVR intensity patch experts for each scales it is defined in
|
|
for(int scale = 0; scale < num_intensity_svr; ++scale)
|
|
{
|
|
string location = intensity_svr_expert_locations[scale];
|
|
cout << "Reading the intensity SVR patch experts from: " << location << "....";
|
|
Read_SVR_patch_experts(location, centers[scale], visibilities[scale], svr_expert_intensity[scale], patch_scaling[scale]);
|
|
}
|
|
|
|
// Initialise and read CCNF patch experts (currently only intensity based),
|
|
int num_intensity_ccnf = intensity_ccnf_expert_locations.size();
|
|
|
|
// CCNF experts override the SVR ones
|
|
if(num_intensity_ccnf > 0)
|
|
{
|
|
centers.resize(num_intensity_ccnf);
|
|
visibilities.resize(num_intensity_ccnf);
|
|
patch_scaling.resize(num_intensity_ccnf);
|
|
ccnf_expert_intensity.resize(num_intensity_ccnf);
|
|
}
|
|
|
|
for(int scale = 0; scale < num_intensity_ccnf; ++scale)
|
|
{
|
|
string location = intensity_ccnf_expert_locations[scale];
|
|
cout << "Reading the intensity CCNF patch experts from: " << location << "....";
|
|
Read_CCNF_patch_experts(location, centers[scale], visibilities[scale], ccnf_expert_intensity[scale], patch_scaling[scale]);
|
|
}
|
|
|
|
}
|
|
//======================= Reading the SVR patch experts =========================================//
|
|
void Patch_experts::Read_SVR_patch_experts(string expert_location, std::vector<cv::Vec3d>& centers, std::vector<cv::Mat_<int> >& visibility, std::vector<std::vector<Multi_SVR_patch_expert> >& patches, double& scale)
|
|
{
|
|
|
|
ifstream patchesFile(expert_location.c_str(), ios_base::in);
|
|
|
|
if(patchesFile.is_open())
|
|
{
|
|
LandmarkDetector::SkipComments(patchesFile);
|
|
|
|
patchesFile >> scale;
|
|
|
|
LandmarkDetector::SkipComments(patchesFile);
|
|
|
|
int numberViews;
|
|
|
|
patchesFile >> numberViews;
|
|
|
|
// read the visibility
|
|
centers.resize(numberViews);
|
|
visibility.resize(numberViews);
|
|
|
|
patches.resize(numberViews);
|
|
|
|
LandmarkDetector::SkipComments(patchesFile);
|
|
|
|
// centers of each view (which view corresponds to which orientation)
|
|
for(size_t i = 0; i < centers.size(); i++)
|
|
{
|
|
cv::Mat center;
|
|
LandmarkDetector::ReadMat(patchesFile, center);
|
|
center.copyTo(centers[i]);
|
|
centers[i] = centers[i] * M_PI / 180.0;
|
|
}
|
|
|
|
LandmarkDetector::SkipComments(patchesFile);
|
|
|
|
// the visibility of points for each of the views (which verts are visible at a specific view
|
|
for(size_t i = 0; i < visibility.size(); i++)
|
|
{
|
|
LandmarkDetector::ReadMat(patchesFile, visibility[i]);
|
|
}
|
|
|
|
int numberOfPoints = visibility[0].rows;
|
|
|
|
LandmarkDetector::SkipComments(patchesFile);
|
|
|
|
// read the patches themselves
|
|
for(size_t i = 0; i < patches.size(); i++)
|
|
{
|
|
// number of patches for each view
|
|
patches[i].resize(numberOfPoints);
|
|
// read in each patch
|
|
for(int j = 0; j < numberOfPoints; j++)
|
|
{
|
|
patches[i][j].Read(patchesFile);
|
|
}
|
|
}
|
|
|
|
cout << "Done" << endl;
|
|
}
|
|
else
|
|
{
|
|
cout << "Can't find/open the patches file" << endl;
|
|
}
|
|
}
|
|
|
|
//======================= Reading the CCNF patch experts =========================================//
|
|
void Patch_experts::Read_CCNF_patch_experts(string patchesFileLocation, std::vector<cv::Vec3d>& centers, std::vector<cv::Mat_<int> >& visibility, std::vector<std::vector<CCNF_patch_expert> >& patches, double& patchScaling)
|
|
{
|
|
|
|
ifstream patchesFile(patchesFileLocation.c_str(), ios::in | ios::binary);
|
|
|
|
if(patchesFile.is_open())
|
|
{
|
|
patchesFile.read ((char*)&patchScaling, 8);
|
|
|
|
int numberViews;
|
|
patchesFile.read ((char*)&numberViews, 4);
|
|
|
|
// read the visibility
|
|
centers.resize(numberViews);
|
|
visibility.resize(numberViews);
|
|
|
|
patches.resize(numberViews);
|
|
|
|
// centers of each view (which view corresponds to which orientation)
|
|
for(size_t i = 0; i < centers.size(); i++)
|
|
{
|
|
cv::Mat center;
|
|
LandmarkDetector::ReadMatBin(patchesFile, center);
|
|
center.copyTo(centers[i]);
|
|
centers[i] = centers[i] * M_PI / 180.0;
|
|
}
|
|
|
|
// the visibility of points for each of the views (which verts are visible at a specific view
|
|
for(size_t i = 0; i < visibility.size(); i++)
|
|
{
|
|
LandmarkDetector::ReadMatBin(patchesFile, visibility[i]);
|
|
}
|
|
int numberOfPoints = visibility[0].rows;
|
|
|
|
// Read the possible SigmaInvs (without beta), this will be followed by patch reading (this assumes all of them have the same type, and number of betas)
|
|
int num_win_sizes;
|
|
int num_sigma_comp;
|
|
patchesFile.read ((char*)&num_win_sizes, 4);
|
|
|
|
vector<int> windows;
|
|
windows.resize(num_win_sizes);
|
|
|
|
vector<vector<cv::Mat_<float> > > sigma_components;
|
|
sigma_components.resize(num_win_sizes);
|
|
|
|
for (int w=0; w < num_win_sizes; ++w)
|
|
{
|
|
patchesFile.read ((char*)&windows[w], 4);
|
|
|
|
patchesFile.read ((char*)&num_sigma_comp, 4);
|
|
|
|
sigma_components[w].resize(num_sigma_comp);
|
|
|
|
for(int s=0; s < num_sigma_comp; ++s)
|
|
{
|
|
LandmarkDetector::ReadMatBin(patchesFile, sigma_components[w][s]);
|
|
}
|
|
}
|
|
|
|
this->sigma_components = sigma_components;
|
|
|
|
// read the patches themselves
|
|
for(size_t i = 0; i < patches.size(); i++)
|
|
{
|
|
// number of patches for each view
|
|
patches[i].resize(numberOfPoints);
|
|
// read in each patch
|
|
for(int j = 0; j < numberOfPoints; j++)
|
|
{
|
|
patches[i][j].Read(patchesFile, windows, sigma_components);
|
|
}
|
|
}
|
|
cout << "Done" << endl;
|
|
}
|
|
else
|
|
{
|
|
cout << "Can't find/open the patches file" << endl;
|
|
}
|
|
}
|
|
|