sustaining_gazes/exe/FaceLandmarkVid/FaceLandmarkVid.cpp
2017-11-10 19:01:43 +00:00

229 lines
7.9 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FaceTrackingVid.cpp : Defines the entry point for the console application for tracking faces in videos.
// Libraries for landmark detection (includes CLNF and CLM modules)
#include "LandmarkCoreIncludes.h"
#include "GazeEstimation.h"
#include <fstream>
#include <sstream>
// OpenCV includes
#include <opencv2/videoio/videoio.hpp> // Video write
#include <opencv2/videoio/videoio_c.h> // Video write
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <SequenceCapture.h>
// Boost includes
#include <filesystem.hpp>
#include <filesystem/fstream.hpp>
#define INFO_STREAM( stream ) \
std::cout << stream << std::endl
#define WARN_STREAM( stream ) \
std::cout << "Warning: " << stream << std::endl
#define ERROR_STREAM( stream ) \
std::cout << "Error: " << stream << std::endl
static void printErrorAndAbort( const std::string & error )
{
std::cout << error << std::endl;
abort();
}
#define FATAL_STREAM( stream ) \
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
using namespace std;
vector<string> get_arguments(int argc, char **argv)
{
vector<string> arguments;
for(int i = 0; i < argc; ++i)
{
arguments.push_back(string(argv[i]));
}
return arguments;
}
// Some globals for tracking timing information for visualisation
double fps_tracker = -1.0;
int64 t0 = 0;
int frame_count = 0;
// Visualising the results, TODO move to separate
void visualise_tracking(cv::Mat& captured_image, const LandmarkDetector::CLNF& face_model, const LandmarkDetector::FaceModelParameters& det_parameters, cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, double fx, double fy, double cx, double cy)
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model.detection_certainty;
bool detection_success = face_model.detection_success;
double visualisation_boundary = 0.4;
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if (detection_certainty > visualisation_boundary)
{
LandmarkDetector::Draw(captured_image, face_model);
double vis_certainty = detection_certainty;
if (vis_certainty > 1)
vis_certainty = 1;
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
// A rough heuristic for box around the face width
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector::DrawBox(captured_image, pose_estimate_to_draw, cv::Scalar(vis_certainty*255.0, 0, (1 - vis_certainty) * 255), thickness, fx, fy, cx, cy);
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
{
GazeAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
}
}
// Work out the framerate TODO
if (frame_count % 10 == 0)
{
double t1 = cv::getTickCount();
fps_tracker = 10.0 / (double(t1 - t0) / cv::getTickFrequency());
t0 = t1;
}
// Write out the framerate on the image before displaying it
char fpsC[255];
std::sprintf(fpsC, "%d", (int)fps_tracker);
string fpsSt("FPS:");
fpsSt += fpsC;
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
frame_count++;
}
int main (int argc, char **argv)
{
vector<string> arguments = get_arguments(argc, argv);
LandmarkDetector::FaceModelParameters det_parameters(arguments);
det_parameters.track_gaze = true;
// The modules that are being used for tracking
LandmarkDetector::CLNF clnf_model(det_parameters.model_location);
// Open a sequence
Utilities::SequenceCapture sequence_reader;
while (true) // this is not a for loop as we might also be reading from a webcam
{
// The sequence reader chooses what to open based on command line arguments provided
if(!sequence_reader.Open(arguments) && sequence_reader.no_input_specified)
{
// If that fails, revert to webcam
INFO_STREAM("No input specified, attempting to open a webcam 0");
if (!sequence_reader.OpenWebcam(0))
ERROR_STREAM("Failed to open the webcam");
}
else
{
ERROR_STREAM("Failed to open a sequence");
break;
}
INFO_STREAM("Device or file opened");
cv::Mat captured_image = sequence_reader.GetNextFrame();
INFO_STREAM("Starting tracking");
while (!captured_image.empty()) // this is not a for loop as we might also be reading from a webcam
{
// Reading the images
cv::Mat_<uchar> grayscale_image = sequence_reader.GetGrayFrame();
// The actual facial landmark detection / tracking
bool detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, clnf_model, det_parameters);
// Visualising the results
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = clnf_model.detection_certainty;
// Gaze tracking, absolute gaze direction
cv::Point3f gazeDirection0(0, 0, -1);
cv::Point3f gazeDirection1(0, 0, -1);
if (det_parameters.track_gaze && detection_success && clnf_model.eye_model)
{
GazeAnalysis::EstimateGaze(clnf_model, gazeDirection0, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, true);
GazeAnalysis::EstimateGaze(clnf_model, gazeDirection1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, false);
}
visualise_tracking(captured_image, clnf_model, det_parameters, gazeDirection0, gazeDirection1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
// detect key presses
char character_press = cv::waitKey(1);
// restart the tracker
if (character_press == 'r')
{
clnf_model.Reset();
}
// quit the application
else if (character_press == 'q')
{
return(0);
}
}
// Reset the model, for the next video
clnf_model.Reset();
}
return 0;
}