258 lines
No EOL
10 KiB
Matlab
258 lines
No EOL
10 KiB
Matlab
function [ shape2D, global_params, local_params, final_lhood, landmark_lhoods, view_used ] = Fitting_from_bb( Image, DepthImage, bounding_box, PDM, patchExperts, clmParams, varargin)
|
|
%FITTING Summary of this function goes here
|
|
% Detailed explanation goes here
|
|
|
|
% the bounding box format is [minX, minY, maxX, maxY];
|
|
|
|
% the mean model shape
|
|
M = PDM.M;
|
|
|
|
num_points = numel(M) / 3;
|
|
|
|
if(any(strcmp(varargin,'orientation')))
|
|
orientation = varargin{find(strcmp(varargin, 'orientation'))+1};
|
|
rot = Euler2Rot(orientation);
|
|
else
|
|
rot = eye(3);
|
|
orientation = [0;0;0];
|
|
end
|
|
|
|
rot_m = rot * reshape(M, num_points, 3)';
|
|
width_model = max(rot_m(1,:)) - min(rot_m(1,:));
|
|
height_model = max(rot_m(2,:)) - min(rot_m(2,:));
|
|
|
|
a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2;
|
|
|
|
tx = (bounding_box(3) + bounding_box(1))/2;
|
|
ty = (bounding_box(4) + bounding_box(2))/2;
|
|
|
|
% correct it so that the bounding box is just around the minimum
|
|
% and maximum point in the initialised face
|
|
tx = tx - a*(min(rot_m(1,:)) + max(rot_m(1,:)))/2;
|
|
ty = ty - a*(min(rot_m(2,:)) + max(rot_m(2,:)))/2;
|
|
|
|
% visualisation of the initial state
|
|
%hold off;imshow(Image);hold on;plot(a*rot_m(1,:)+tx, a*rot_m(2,:)+ty,'.r');hold on;rectangle('Position', [bounding_box(1), bounding_box(2), bounding_box(3)-bounding_box(1), bounding_box(4)-bounding_box(2)]);
|
|
global_params = [a, 0, 0, 0, tx, ty]';
|
|
global_params(2:4) = orientation;
|
|
|
|
local_params = zeros(numel(PDM.E), 1);
|
|
|
|
if(any(strcmp(varargin,'gparam')))
|
|
global_params = varargin{find(strcmp(varargin, 'gparam'))+1};
|
|
end
|
|
|
|
if(any(strcmp(varargin,'lparam')))
|
|
local_params = varargin{find(strcmp(varargin, 'lparam'))+1};
|
|
end
|
|
|
|
scale = clmParams.startScale;
|
|
|
|
if(size(Image, 3) == 1)
|
|
GrayImage = Image;
|
|
else
|
|
GrayImage = rgb2gray(Image);
|
|
end
|
|
|
|
[heightImg, widthImg] = size(GrayImage);
|
|
|
|
% Some predefinitions for faster patch extraction
|
|
[xi, yi] = meshgrid(0:widthImg-1,0:heightImg-1);
|
|
xi = double(xi);
|
|
yi = double(yi);
|
|
|
|
GrayImageDb = double(GrayImage);
|
|
|
|
clmParams_old = clmParams;
|
|
|
|
% multi iteration refinement using NU-RLMS in each one
|
|
for i=1:clmParams.numPatchIters
|
|
|
|
current_patch_scaling = patchExperts(scale).trainingScale;
|
|
visibilities = patchExperts(scale).visibilities;
|
|
|
|
view = GetView(patchExperts(scale).centers, global_params(2:4));
|
|
|
|
% The shape fitting is performed in the reference frame of the
|
|
% patch training scale
|
|
refGlobal = [current_patch_scaling, 0, 0, 0, 0, 0]';
|
|
|
|
% the reference shape
|
|
refShape = GetShapeOrtho(M, PDM.V, local_params, refGlobal);
|
|
|
|
% shape around which the patch experts will be evaluated in the original image
|
|
[shape2D] = GetShapeOrtho(M, PDM.V, local_params, global_params);
|
|
shape2D_img = shape2D(:,1:2);
|
|
|
|
% Create transform using a slightly modified version of Kabsch that
|
|
% takes scaling into account as well, in essence we get a
|
|
% similarity transform from current estimate to reference shape
|
|
[A_img2ref, T_img2ref, ~, ~] = AlignShapesWithScale(shape2D_img(:,1:2),refShape(:,1:2));
|
|
|
|
% Create a transform, from shape in image to reference shape
|
|
T = maketform('affine', [A_img2ref;T_img2ref]);
|
|
|
|
shape_2D_ref = tformfwd(T, shape2D_img);
|
|
|
|
% transform the current shape to the reference one, so we can
|
|
% interpolate
|
|
shape2D_in_ref = (A_img2ref * shape2D_img')';
|
|
|
|
sideSizeX = (clmParams.window_size(i,1) - 1)/2;
|
|
sideSizeY = (clmParams.window_size(i,2) - 1)/2;
|
|
|
|
patches = zeros(size(shape2D_in_ref,1), clmParams.window_size(i,1) * clmParams.window_size(i,2));
|
|
|
|
Ainv = inv(A_img2ref);
|
|
|
|
% extract patches on which patch experts will be evaluted
|
|
for l=1:size(shape2D_in_ref,1)
|
|
if(visibilities(view,l))
|
|
|
|
xs = (shape2D_in_ref(l,1)-sideSizeX):(shape2D_in_ref(l,1)+sideSizeX);
|
|
ys = (shape2D_in_ref(l,2)-sideSizeY):(shape2D_in_ref(l,2)+sideSizeY);
|
|
|
|
[xs, ys] = meshgrid(xs, ys);
|
|
|
|
pairs = [xs(:), ys(:)];
|
|
|
|
actualLocs = (Ainv * pairs')';
|
|
|
|
actualLocs(actualLocs(:,1) < 0,1) = 0;
|
|
actualLocs(actualLocs(:,2) < 0,2) = 0;
|
|
actualLocs(actualLocs(:,1) > widthImg - 1,1) = widthImg - 1;
|
|
actualLocs(actualLocs(:,2) > heightImg - 1,2) = heightImg - 1;
|
|
|
|
[t_patch] = interp2_mine(xi, yi, GrayImageDb, actualLocs(:,1), actualLocs(:,2), 'bilinear');
|
|
t_patch = reshape(t_patch, size(xs));
|
|
|
|
patches(l,:) = t_patch(:);
|
|
|
|
end
|
|
end
|
|
|
|
% Calculate patch responses, either SVR or CCNF
|
|
if(strcmp(patchExperts(scale).type, 'SVR'))
|
|
responses = PatchResponseSVM_multi_modal( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale).normalisationOptionsCol, clmParams, clmParams.window_size(i,:));
|
|
elseif(strcmp(patchExperts(scale).type, 'CCNF'))
|
|
responses = PatchResponseCCNF( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale), clmParams.window_size(i,:));
|
|
end
|
|
|
|
% If a depth image is provided compute patch experts around it as
|
|
% well (unless it's the final iteration)
|
|
if(~isempty(DepthImage) && (i ~= clmParams.numPatchIters))
|
|
|
|
% Extracting the depth patches here
|
|
patches_depth = zeros(size(shape2D_in_ref,1), clmParams.window_size(i,1) * clmParams.window_size(i,2));
|
|
|
|
% extract patches on which patch experts will be evaluted
|
|
for l=1:size(shape2D_in_ref,1)
|
|
if(visibilities(view,l))
|
|
|
|
xs = (shape2D_in_ref(l,1)-sideSizeX):(shape2D_in_ref(l,1)+sideSizeX);
|
|
ys = (shape2D_in_ref(l,2)-sideSizeY):(shape2D_in_ref(l,2)+sideSizeY);
|
|
|
|
[xs, ys] = meshgrid(xs, ys);
|
|
|
|
pairs = [xs(:), ys(:)];
|
|
|
|
actualLocs = (Ainv * pairs')';
|
|
|
|
actualLocs(actualLocs(:,1) < 1,1) = 1;
|
|
actualLocs(actualLocs(:,2) < 1,2) = 1;
|
|
actualLocs(actualLocs(:,1) > widthImg,1) = widthImg;
|
|
actualLocs(actualLocs(:,2) > heightImg,2) = heightImg;
|
|
|
|
% use nearest neighbour interpolation as bilinear would
|
|
% produce artefacts in depth image (when missing data
|
|
% is there)
|
|
[t_patch] = interp2_mine(xi, yi, DepthImage, actualLocs(:,1), actualLocs(:,2), 'nearest');
|
|
t_patch = reshape(t_patch, size(xs));
|
|
|
|
patches_depth(l,:) = t_patch(:);
|
|
|
|
end
|
|
end
|
|
|
|
old_mm = clmParams.use_multi_modal;
|
|
clmParams.use_multi_modal = 0;
|
|
responses_depth = PatchResponseSVM_multi_modal( patches_depth, patchExperts(scale).patch_experts_depth(view,:), visibilities(view,:), patchExperts(scale).normalisationOptionsDepth, clmParams, clmParams.window_size(i,:));
|
|
clmParams.use_multi_modal = old_mm;
|
|
|
|
% Combining the patch responses from different channels here
|
|
for l=1:size(shape2D_in_ref,1)
|
|
responses{l} = responses{l} + responses_depth{l};
|
|
end
|
|
end
|
|
|
|
% the better the correlation in training the more reliable the feature
|
|
% the reliabilities are independent for every modality in SVR, so
|
|
% combine them (also correlation is inverse to variance)
|
|
if(strcmp(patchExperts(scale).type, 'SVR'))
|
|
if(clmParams.use_multi_modal)
|
|
reliabilities = patchExperts(scale).patch_experts{1,1}(end).correlations{1};
|
|
else
|
|
reliabilities = patchExperts(scale).patch_experts{1,1}(1).correlations{1};
|
|
end
|
|
else
|
|
% for CCNF the modalities work together
|
|
reliabilities = patchExperts(scale).correlations;
|
|
end
|
|
reliabilities = reliabilities(view,:);
|
|
|
|
% deal with the fact that params might be different for different
|
|
% scales
|
|
if(numel(clmParams_old.regFactor) > 1)
|
|
clmParams.regFactor = clmParams_old.regFactor(i);
|
|
end
|
|
if(numel(clmParams_old.sigmaMeanShift) > 1)
|
|
clmParams.sigmaMeanShift = clmParams_old.sigmaMeanShift(i);
|
|
end
|
|
if(numel(clmParams_old.tikhonov_factor) > 1)
|
|
clmParams.tikhonov_factor = clmParams_old.tikhonov_factor(i);
|
|
end
|
|
|
|
% The actual NU-RLMS step
|
|
|
|
% first the rigid transform
|
|
[global_params, local_params] = NU_RLMS(global_params, local_params, PDM, responses, visibilities, view, reliabilities, shape2D_img, T, true, clmParams, []);
|
|
|
|
% second the combined transform
|
|
[global_params, local_params, final_lhood, landmark_lhoods] = ...
|
|
NU_RLMS(global_params, local_params, PDM, responses, visibilities, view, reliabilities, shape2D_img, T, false, clmParams, []);
|
|
|
|
% Clamp orientation and make sure it doesn't get out of hand
|
|
orientation = global_params(2:4);
|
|
orientation(orientation < -pi/2) = -pi/2;
|
|
orientation(orientation > pi/2) = pi/2;
|
|
global_params(2:4) = orientation;
|
|
|
|
% move up a scale if possible
|
|
if(clmParams.useMultiScale && scale ~= numel(patchExperts))
|
|
|
|
% only go up a scale if we don't need to upsample
|
|
if(0.9 * patchExperts(scale+1).trainingScale < global_params(1))
|
|
scale = scale + 1;
|
|
else
|
|
break;
|
|
end
|
|
end
|
|
end
|
|
|
|
% the view in last iteration
|
|
view_used = view;
|
|
|
|
% See how good the tracking was in the end
|
|
[shape2D] = GetShapeOrtho(M, PDM.V, local_params, global_params);
|
|
|
|
% Moving to matlab format
|
|
shape2D = shape2D(:,1:2) + 1;
|
|
|
|
end
|
|
|
|
|
|
function [id] = GetView(centers, rotation)
|
|
|
|
[~,id] = min(sum((centers * pi/180 - repmat(rotation', size(centers,1), 1)).^2,2));
|
|
|
|
end |