sustaining_gazes/lib/local/LandmarkDetector/src/LandmarkDetectorFunc.cpp
2016-10-21 00:07:11 +09:00

600 lines
25 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include <LandmarkDetectorFunc.h>
// OpenCV includes
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>
// System includes
#include <vector>
using namespace LandmarkDetector;
// Getting a head pose estimate from the currently detected landmarks (rotation with respect to point camera)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv::Vec6d LandmarkDetector::GetPoseCamera(const CLNF& clnf_model, double fx, double fy, double cx, double cy)
{
if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0)
{
double Z = fx / clnf_model.params_global[0];
double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z;
double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z;
return cv::Vec6d(X, Y, Z, clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]);
}
else
{
return cv::Vec6d(0,0,0,0,0,0);
}
}
// Getting a head pose estimate from the currently detected landmarks (rotation in world coordinates)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv::Vec6d LandmarkDetector::GetPoseWorld(const CLNF& clnf_model, double fx, double fy, double cx, double cy)
{
if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0)
{
double Z = fx / clnf_model.params_global[0];
double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z;
double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z;
// Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose
double z_x = cv::sqrt(X * X + Z * Z);
double eul_x = atan2(Y, z_x);
double z_y = cv::sqrt(Y * Y + Z * Z);
double eul_y = -atan2(X, z_y);
cv::Matx33d camera_rotation = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(eul_x, eul_y, 0));
cv::Matx33d head_rotation = LandmarkDetector::AxisAngle2RotationMatrix(cv::Vec3d(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]));
cv::Matx33d corrected_rotation = camera_rotation.t() * head_rotation;
cv::Vec3d euler_corrected = LandmarkDetector::RotationMatrix2Euler(corrected_rotation);
return cv::Vec6d(X, Y, Z, euler_corrected[0], euler_corrected[1], euler_corrected[2]);
}
else
{
return cv::Vec6d(0,0,0,0,0,0);
}
}
// Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to orthographic camera issue
// This is because rotation estimate under orthographic assumption is only correct close to the centre of the image
// This method returns a corrected pose estimate with respect to world coordinates (Experimental)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv::Vec6d LandmarkDetector::GetCorrectedPoseWorld(const CLNF& clnf_model, double fx, double fy, double cx, double cy)
{
if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0)
{
// This is used as an initial estimate for the iterative PnP algorithm
double Z = fx / clnf_model.params_global[0];
double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z;
double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z;
// Correction for orientation
// 2D points
cv::Mat_<double> landmarks_2D = clnf_model.detected_landmarks;
landmarks_2D = landmarks_2D.reshape(1, 2).t();
// 3D points
cv::Mat_<double> landmarks_3D;
clnf_model.pdm.CalcShape3D(landmarks_3D, clnf_model.params_local);
landmarks_3D = landmarks_3D.reshape(1, 3).t();
// Solving the PNP model
// The camera matrix
cv::Matx33d camera_matrix(fx, 0, cx, 0, fy, cy, 0, 0, 1);
cv::Vec3d vec_trans(X, Y, Z);
cv::Vec3d vec_rot(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]);
cv::solvePnP(landmarks_3D, landmarks_2D, camera_matrix, cv::Mat(), vec_rot, vec_trans, true);
cv::Vec3d euler = LandmarkDetector::AxisAngle2Euler(vec_rot);
return cv::Vec6d(vec_trans[0], vec_trans[1], vec_trans[2], vec_rot[0], vec_rot[1], vec_rot[2]);
}
else
{
return cv::Vec6d(0,0,0,0,0,0);
}
}
// Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to perspective projection
// This method returns a corrected pose estimate with respect to a point camera (NOTE not the world coordinates) (Experimental)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv::Vec6d LandmarkDetector::GetCorrectedPoseCamera(const CLNF& clnf_model, double fx, double fy, double cx, double cy)
{
if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0)
{
double Z = fx / clnf_model.params_global[0];
double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z;
double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z;
// Correction for orientation
// 3D points
cv::Mat_<double> landmarks_3D;
clnf_model.pdm.CalcShape3D(landmarks_3D, clnf_model.params_local);
landmarks_3D = landmarks_3D.reshape(1, 3).t();
// 2D points
cv::Mat_<double> landmarks_2D = clnf_model.detected_landmarks;
landmarks_2D = landmarks_2D.reshape(1, 2).t();
// Solving the PNP model
// The camera matrix
cv::Matx33d camera_matrix(fx, 0, cx, 0, fy, cy, 0, 0, 1);
cv::Vec3d vec_trans(X, Y, Z);
cv::Vec3d vec_rot(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]);
cv::solvePnP(landmarks_3D, landmarks_2D, camera_matrix, cv::Mat(), vec_rot, vec_trans, true);
// Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose
double z_x = cv::sqrt(vec_trans[0] * vec_trans[0] + vec_trans[2] * vec_trans[2]);
double eul_x = atan2(vec_trans[1], z_x);
double z_y = cv::sqrt(vec_trans[1] * vec_trans[1] + vec_trans[2] * vec_trans[2]);
double eul_y = -atan2(vec_trans[0], z_y);
cv::Matx33d camera_rotation = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(eul_x, eul_y, 0));
cv::Matx33d head_rotation = LandmarkDetector::AxisAngle2RotationMatrix(vec_rot);
cv::Matx33d corrected_rotation = camera_rotation * head_rotation;
cv::Vec3d euler_corrected = LandmarkDetector::RotationMatrix2Euler(corrected_rotation);
return cv::Vec6d(vec_trans[0], vec_trans[1], vec_trans[2], euler_corrected[0], euler_corrected[1], euler_corrected[2]);
}
else
{
return cv::Vec6d(0,0,0,0,0,0);
}
}
// If landmark detection in video succeeded create a template for use in simple tracking
void UpdateTemplate(const cv::Mat_<uchar> &grayscale_image, CLNF& clnf_model)
{
cv::Rect bounding_box;
clnf_model.pdm.CalcBoundingBox(bounding_box, clnf_model.params_global, clnf_model.params_local);
// Make sure the box is not out of bounds
bounding_box = bounding_box & cv::Rect(0, 0, grayscale_image.cols, grayscale_image.rows);
clnf_model.face_template = grayscale_image(bounding_box).clone();
}
// This method uses basic template matching in order to allow for better tracking of fast moving faces
void CorrectGlobalParametersVideo(const cv::Mat_<uchar> &grayscale_image, CLNF& clnf_model, const FaceModelParameters& params)
{
cv::Rect init_box;
clnf_model.pdm.CalcBoundingBox(init_box, clnf_model.params_global, clnf_model.params_local);
cv::Rect roi(init_box.x - init_box.width/2, init_box.y - init_box.height/2, init_box.width * 2, init_box.height * 2);
roi = roi & cv::Rect(0, 0, grayscale_image.cols, grayscale_image.rows);
int off_x = roi.x;
int off_y = roi.y;
double scaling = params.face_template_scale / clnf_model.params_global[0];
cv::Mat_<uchar> image;
if(scaling < 1)
{
cv::resize(clnf_model.face_template, clnf_model.face_template, cv::Size(), scaling, scaling);
cv::resize(grayscale_image(roi), image, cv::Size(), scaling, scaling);
}
else
{
scaling = 1;
image = grayscale_image(roi).clone();
}
// Resizing the template
cv::Mat corr_out;
cv::matchTemplate(image, clnf_model.face_template, corr_out, CV_TM_CCOEFF_NORMED);
// Actually matching it
//double min, max;
int max_loc[2];
cv::minMaxIdx(corr_out, NULL, NULL, NULL, max_loc);
cv::Rect_<double> out_bbox(max_loc[1]/scaling + off_x, max_loc[0]/scaling + off_y, clnf_model.face_template.rows / scaling, clnf_model.face_template.cols / scaling);
double shift_x = out_bbox.x - (double)init_box.x;
double shift_y = out_bbox.y - (double)init_box.y;
clnf_model.params_global[4] = clnf_model.params_global[4] + shift_x;
clnf_model.params_global[5] = clnf_model.params_global[5] + shift_y;
}
bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_image, const cv::Mat_<float> &depth_image, CLNF& clnf_model, FaceModelParameters& params)
{
// First need to decide if the landmarks should be "detected" or "tracked"
// Detected means running face detection and a larger search area, tracked means initialising from previous step
// and using a smaller search area
// Indicating that this is a first detection in video sequence or after restart
bool initial_detection = !clnf_model.tracking_initialised;
// Only do it if there was a face detection at all
if(clnf_model.tracking_initialised)
{
// The area of interest search size will depend if the previous track was successful
if(!clnf_model.detection_success)
{
params.window_sizes_current = params.window_sizes_init;
}
else
{
params.window_sizes_current = params.window_sizes_small;
}
// Before the expensive landmark detection step apply a quick template tracking approach
if(params.use_face_template && !clnf_model.face_template.empty() && clnf_model.detection_success)
{
CorrectGlobalParametersVideo(grayscale_image, clnf_model, params);
}
bool track_success = clnf_model.DetectLandmarks(grayscale_image, depth_image, params);
if(!track_success)
{
// Make a record that tracking failed
clnf_model.failures_in_a_row++;
}
else
{
// indicate that tracking is a success
clnf_model.failures_in_a_row = -1;
UpdateTemplate(grayscale_image, clnf_model);
}
}
// This is used for both detection (if it the tracking has not been initialised yet) or if the tracking failed (however we do this every n frames, for speed)
// This also has the effect of an attempt to reinitialise just after the tracking has failed, which is useful during large motions
if((!clnf_model.tracking_initialised && (clnf_model.failures_in_a_row + 1) % (params.reinit_video_every * 6) == 0)
|| (clnf_model.tracking_initialised && !clnf_model.detection_success && params.reinit_video_every > 0 && clnf_model.failures_in_a_row % params.reinit_video_every == 0))
{
cv::Rect_<double> bounding_box;
// If the face detector has not been initialised read it in
if(clnf_model.face_detector_HAAR.empty())
{
clnf_model.face_detector_HAAR.load(params.face_detector_location);
clnf_model.face_detector_location = params.face_detector_location;
}
cv::Point preference_det(-1, -1);
if(clnf_model.preference_det.x != -1 && clnf_model.preference_det.y != -1)
{
preference_det.x = clnf_model.preference_det.x * grayscale_image.cols;
preference_det.y = clnf_model.preference_det.y * grayscale_image.rows;
clnf_model.preference_det = cv::Point(-1, -1);
}
bool face_detection_success;
if(params.curr_face_detector == FaceModelParameters::HOG_SVM_DETECTOR)
{
double confidence;
face_detection_success = LandmarkDetector::DetectSingleFaceHOG(bounding_box, grayscale_image, clnf_model.face_detector_HOG, confidence, preference_det);
}
else if(params.curr_face_detector == FaceModelParameters::HAAR_DETECTOR)
{
face_detection_success = LandmarkDetector::DetectSingleFace(bounding_box, grayscale_image, clnf_model.face_detector_HAAR, preference_det);
}
// Attempt to detect landmarks using the detected face (if unseccessful the detection will be ignored)
if(face_detection_success)
{
// Indicate that tracking has started as a face was detected
clnf_model.tracking_initialised = true;
// Keep track of old model values so that they can be restored if redetection fails
cv::Vec6d params_global_init = clnf_model.params_global;
cv::Mat_<double> params_local_init = clnf_model.params_local.clone();
double likelihood_init = clnf_model.model_likelihood;
cv::Mat_<double> detected_landmarks_init = clnf_model.detected_landmarks.clone();
cv::Mat_<double> landmark_likelihoods_init = clnf_model.landmark_likelihoods.clone();
// Use the detected bounding box and empty local parameters
clnf_model.params_local.setTo(0);
clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local);
// Make sure the search size is large
params.window_sizes_current = params.window_sizes_init;
// Do the actual landmark detection (and keep it only if successful)
bool landmark_detection_success = clnf_model.DetectLandmarks(grayscale_image, depth_image, params);
// If landmark reinitialisation unsucessful continue from previous estimates
// if it's initial detection however, do not care if it was successful as the validator might be wrong, so continue trackig
// regardless
if(!initial_detection && !landmark_detection_success)
{
// Restore previous estimates
clnf_model.params_global = params_global_init;
clnf_model.params_local = params_local_init.clone();
clnf_model.pdm.CalcShape2D(clnf_model.detected_landmarks, clnf_model.params_local, clnf_model.params_global);
clnf_model.model_likelihood = likelihood_init;
clnf_model.detected_landmarks = detected_landmarks_init.clone();
clnf_model.landmark_likelihoods = landmark_likelihoods_init.clone();
return false;
}
else
{
clnf_model.failures_in_a_row = -1;
UpdateTemplate(grayscale_image, clnf_model);
return true;
}
}
}
// if the model has not been initialised yet class it as a failure
if(!clnf_model.tracking_initialised)
{
clnf_model.failures_in_a_row++;
}
// un-initialise the tracking
if( clnf_model.failures_in_a_row > 100)
{
clnf_model.tracking_initialised = false;
}
return clnf_model.detection_success;
}
bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_image, const cv::Mat_<float> &depth_image, const cv::Rect_<double> bounding_box, CLNF& clnf_model, FaceModelParameters& params)
{
if(bounding_box.width > 0)
{
// calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown)
clnf_model.params_local.setTo(0);
clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local);
// indicate that face was detected so initialisation is not necessary
clnf_model.tracking_initialised = true;
}
return DetectLandmarksInVideo(grayscale_image, depth_image, clnf_model, params);
}
bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_image, CLNF& clnf_model, FaceModelParameters& params)
{
return DetectLandmarksInVideo(grayscale_image, cv::Mat_<float>(), clnf_model, params);
}
bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_image, const cv::Rect_<double> bounding_box, CLNF& clnf_model, FaceModelParameters& params)
{
return DetectLandmarksInVideo(grayscale_image, cv::Mat_<float>(), bounding_box, clnf_model, params);
}
//================================================================================================================
// Landmark detection in image, need to provide an image and optionally CLNF model together with parameters (default values work well)
// Optionally can provide a bounding box in which detection is performed (this is useful if multiple faces are to be detected in images)
//================================================================================================================
// This is the one where the actual work gets done, other DetectLandmarksInImage calls lead to this one
bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_<uchar> &grayscale_image, const cv::Mat_<float> depth_image, const cv::Rect_<double> bounding_box, CLNF& clnf_model, FaceModelParameters& params)
{
// Can have multiple hypotheses
vector<cv::Vec3d> rotation_hypotheses;
if(params.multi_view)
{
// Try out different orientation initialisations
// It is possible to add other orientation hypotheses easilly by just pushing to this vector
rotation_hypotheses.push_back(cv::Vec3d(0,0,0));
rotation_hypotheses.push_back(cv::Vec3d(0,0.5236,0));
rotation_hypotheses.push_back(cv::Vec3d(0,-0.5236,0));
rotation_hypotheses.push_back(cv::Vec3d(0.5236,0,0));
rotation_hypotheses.push_back(cv::Vec3d(-0.5236,0,0));
}
else
{
// Assume the face is close to frontal
rotation_hypotheses.push_back(cv::Vec3d(0,0,0));
}
// Use the initialisation size for the landmark detection
params.window_sizes_current = params.window_sizes_init;
// Store the current best estimate
double best_likelihood;
cv::Vec6d best_global_parameters;
cv::Mat_<double> best_local_parameters;
cv::Mat_<double> best_detected_landmarks;
cv::Mat_<double> best_landmark_likelihoods;
bool best_success;
// The hierarchical model parameters
vector<double> best_likelihood_h(clnf_model.hierarchical_models.size());
vector<cv::Vec6d> best_global_parameters_h(clnf_model.hierarchical_models.size());
vector<cv::Mat_<double>> best_local_parameters_h(clnf_model.hierarchical_models.size());
vector<cv::Mat_<double>> best_detected_landmarks_h(clnf_model.hierarchical_models.size());
vector<cv::Mat_<double>> best_landmark_likelihoods_h(clnf_model.hierarchical_models.size());
for(size_t hypothesis = 0; hypothesis < rotation_hypotheses.size(); ++hypothesis)
{
// Reset the potentially set clnf_model parameters
clnf_model.params_local.setTo(0.0);
for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part)
{
clnf_model.hierarchical_models[part].params_local.setTo(0.0);
}
// calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown)
clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local, rotation_hypotheses[hypothesis]);
bool success = clnf_model.DetectLandmarks(grayscale_image, depth_image, params);
if(hypothesis == 0 || best_likelihood < clnf_model.model_likelihood)
{
best_likelihood = clnf_model.model_likelihood;
best_global_parameters = clnf_model.params_global;
best_local_parameters = clnf_model.params_local.clone();
best_detected_landmarks = clnf_model.detected_landmarks.clone();
best_landmark_likelihoods = clnf_model.landmark_likelihoods.clone();
best_success = success;
}
for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part)
{
if (hypothesis == 0 || best_likelihood < clnf_model.hierarchical_models[part].model_likelihood)
{
best_likelihood_h[part] = clnf_model.hierarchical_models[part].model_likelihood;
best_global_parameters_h[part] = clnf_model.hierarchical_models[part].params_global;
best_local_parameters_h[part] = clnf_model.hierarchical_models[part].params_local.clone();
best_detected_landmarks_h[part] = clnf_model.hierarchical_models[part].detected_landmarks.clone();
best_landmark_likelihoods_h[part] = clnf_model.hierarchical_models[part].landmark_likelihoods.clone();
}
}
}
// Store the best estimates in the clnf_model
clnf_model.model_likelihood = best_likelihood;
clnf_model.params_global = best_global_parameters;
clnf_model.params_local = best_local_parameters.clone();
clnf_model.detected_landmarks = best_detected_landmarks.clone();
clnf_model.detection_success = best_success;
clnf_model.landmark_likelihoods = best_landmark_likelihoods.clone();
for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part)
{
clnf_model.hierarchical_models[part].params_global = best_global_parameters_h[part];
clnf_model.hierarchical_models[part].params_local = best_local_parameters_h[part].clone();
clnf_model.hierarchical_models[part].detected_landmarks = best_detected_landmarks_h[part].clone();
clnf_model.hierarchical_models[part].landmark_likelihoods = best_landmark_likelihoods_h[part].clone();
}
return best_success;
}
bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_<uchar> &grayscale_image, const cv::Mat_<float> depth_image, CLNF& clnf_model, FaceModelParameters& params)
{
cv::Rect_<double> bounding_box;
// If the face detector has not been initialised read it in
if(clnf_model.face_detector_HAAR.empty())
{
clnf_model.face_detector_HAAR.load(params.face_detector_location);
clnf_model.face_detector_location = params.face_detector_location;
}
// Detect the face first
if(params.curr_face_detector == FaceModelParameters::HOG_SVM_DETECTOR)
{
double confidence;
LandmarkDetector::DetectSingleFaceHOG(bounding_box, grayscale_image, clnf_model.face_detector_HOG, confidence);
}
else if(params.curr_face_detector == FaceModelParameters::HAAR_DETECTOR)
{
LandmarkDetector::DetectSingleFace(bounding_box, grayscale_image, clnf_model.face_detector_HAAR);
}
if(bounding_box.width == 0)
{
return false;
}
else
{
return DetectLandmarksInImage(grayscale_image, depth_image, bounding_box, clnf_model, params);
}
}
// Versions not using depth images
bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_<uchar> &grayscale_image, const cv::Rect_<double> bounding_box, CLNF& clnf_model, FaceModelParameters& params)
{
return DetectLandmarksInImage(grayscale_image, cv::Mat_<float>(), bounding_box, clnf_model, params);
}
bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_<uchar> &grayscale_image, CLNF& clnf_model, FaceModelParameters& params)
{
return DetectLandmarksInImage(grayscale_image, cv::Mat_<float>(), clnf_model, params);
}