sustaining_gazes/lib/3rdParty/tbb/include/tbb/internal/_flow_graph_impl.h

840 lines
27 KiB
C++

/*
Copyright (c) 2005-2017 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB__flow_graph_impl_H
#define __TBB__flow_graph_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
// included in namespace tbb::flow::interfaceX (in flow_graph.h)
namespace internal {
typedef tbb::internal::uint64_t tag_value;
using tbb::internal::strip;
namespace graph_policy_namespace {
struct rejecting { };
struct reserving { };
struct queueing { };
// K == type of field used for key-matching. Each tag-matching port will be provided
// functor that, given an object accepted by the port, will return the
/// field of type K being used for matching.
template<typename K, typename KHash=tbb_hash_compare<typename strip<K>::type > >
struct key_matching {
typedef K key_type;
typedef typename strip<K>::type base_key_type;
typedef KHash hash_compare_type;
};
// old tag_matching join's new specifier
typedef key_matching<tag_value> tag_matching;
}
// -------------- function_body containers ----------------------
//! A functor that takes no input and generates a value of type Output
template< typename Output >
class source_body : tbb::internal::no_assign {
public:
virtual ~source_body() {}
virtual bool operator()(Output &output) = 0;
virtual source_body* clone() = 0;
};
//! The leaf for source_body
template< typename Output, typename Body>
class source_body_leaf : public source_body<Output> {
public:
source_body_leaf( const Body &_body ) : body(_body) { }
bool operator()(Output &output) __TBB_override { return body( output ); }
source_body_leaf* clone() __TBB_override {
return new source_body_leaf< Output, Body >(body);
}
Body get_body() { return body; }
private:
Body body;
};
//! A functor that takes an Input and generates an Output
template< typename Input, typename Output >
class function_body : tbb::internal::no_assign {
public:
virtual ~function_body() {}
virtual Output operator()(const Input &input) = 0;
virtual function_body* clone() = 0;
};
//! the leaf for function_body
template <typename Input, typename Output, typename B>
class function_body_leaf : public function_body< Input, Output > {
public:
function_body_leaf( const B &_body ) : body(_body) { }
Output operator()(const Input &i) __TBB_override { return body(i); }
B get_body() { return body; }
function_body_leaf* clone() __TBB_override {
return new function_body_leaf< Input, Output, B >(body);
}
private:
B body;
};
//! the leaf for function_body specialized for Input and output of continue_msg
template <typename B>
class function_body_leaf< continue_msg, continue_msg, B> : public function_body< continue_msg, continue_msg > {
public:
function_body_leaf( const B &_body ) : body(_body) { }
continue_msg operator()( const continue_msg &i ) __TBB_override {
body(i);
return i;
}
B get_body() { return body; }
function_body_leaf* clone() __TBB_override {
return new function_body_leaf< continue_msg, continue_msg, B >(body);
}
private:
B body;
};
//! the leaf for function_body specialized for Output of continue_msg
template <typename Input, typename B>
class function_body_leaf< Input, continue_msg, B> : public function_body< Input, continue_msg > {
public:
function_body_leaf( const B &_body ) : body(_body) { }
continue_msg operator()(const Input &i) __TBB_override {
body(i);
return continue_msg();
}
B get_body() { return body; }
function_body_leaf* clone() __TBB_override {
return new function_body_leaf< Input, continue_msg, B >(body);
}
private:
B body;
};
//! the leaf for function_body specialized for Input of continue_msg
template <typename Output, typename B>
class function_body_leaf< continue_msg, Output, B > : public function_body< continue_msg, Output > {
public:
function_body_leaf( const B &_body ) : body(_body) { }
Output operator()(const continue_msg &i) __TBB_override {
return body(i);
}
B get_body() { return body; }
function_body_leaf* clone() __TBB_override {
return new function_body_leaf< continue_msg, Output, B >(body);
}
private:
B body;
};
//! function_body that takes an Input and a set of output ports
template<typename Input, typename OutputSet>
class multifunction_body : tbb::internal::no_assign {
public:
virtual ~multifunction_body () {}
virtual void operator()(const Input &/* input*/, OutputSet &/*oset*/) = 0;
virtual multifunction_body* clone() = 0;
virtual void* get_body_ptr() = 0;
};
//! leaf for multifunction. OutputSet can be a std::tuple or a vector.
template<typename Input, typename OutputSet, typename B >
class multifunction_body_leaf : public multifunction_body<Input, OutputSet> {
public:
multifunction_body_leaf(const B &_body) : body(_body) { }
void operator()(const Input &input, OutputSet &oset) __TBB_override {
body(input, oset); // body may explicitly put() to one or more of oset.
}
void* get_body_ptr() __TBB_override { return &body; }
multifunction_body_leaf* clone() __TBB_override {
return new multifunction_body_leaf<Input, OutputSet,B>(body);
}
private:
B body;
};
// ------ function bodies for hash_buffers and key-matching joins.
template<typename Input, typename Output>
class type_to_key_function_body : tbb::internal::no_assign {
public:
virtual ~type_to_key_function_body() {}
virtual Output operator()(const Input &input) = 0; // returns an Output
virtual type_to_key_function_body* clone() = 0;
};
// specialization for ref output
template<typename Input, typename Output>
class type_to_key_function_body<Input,Output&> : tbb::internal::no_assign {
public:
virtual ~type_to_key_function_body() {}
virtual const Output & operator()(const Input &input) = 0; // returns a const Output&
virtual type_to_key_function_body* clone() = 0;
};
template <typename Input, typename Output, typename B>
class type_to_key_function_body_leaf : public type_to_key_function_body<Input, Output> {
public:
type_to_key_function_body_leaf( const B &_body ) : body(_body) { }
Output operator()(const Input &i) __TBB_override { return body(i); }
B get_body() { return body; }
type_to_key_function_body_leaf* clone() __TBB_override {
return new type_to_key_function_body_leaf< Input, Output, B>(body);
}
private:
B body;
};
template <typename Input, typename Output, typename B>
class type_to_key_function_body_leaf<Input,Output&,B> : public type_to_key_function_body< Input, Output&> {
public:
type_to_key_function_body_leaf( const B &_body ) : body(_body) { }
const Output& operator()(const Input &i) __TBB_override {
return body(i);
}
B get_body() { return body; }
type_to_key_function_body_leaf* clone() __TBB_override {
return new type_to_key_function_body_leaf< Input, Output&, B>(body);
}
private:
B body;
};
// --------------------------- end of function_body containers ------------------------
// --------------------------- node task bodies ---------------------------------------
//! A task that calls a node's forward_task function
template< typename NodeType >
class forward_task_bypass : public task {
NodeType &my_node;
public:
forward_task_bypass( NodeType &n ) : my_node(n) {}
task *execute() __TBB_override {
task * new_task = my_node.forward_task();
if (new_task == SUCCESSFULLY_ENQUEUED) new_task = NULL;
return new_task;
}
};
//! A task that calls a node's apply_body_bypass function, passing in an input of type Input
// return the task* unless it is SUCCESSFULLY_ENQUEUED, in which case return NULL
template< typename NodeType, typename Input >
class apply_body_task_bypass : public task {
NodeType &my_node;
Input my_input;
public:
apply_body_task_bypass( NodeType &n, const Input &i ) : my_node(n), my_input(i) {}
task *execute() __TBB_override {
task * next_task = my_node.apply_body_bypass( my_input );
if(next_task == SUCCESSFULLY_ENQUEUED) next_task = NULL;
return next_task;
}
};
//! A task that calls a node's apply_body_bypass function with no input
template< typename NodeType >
class source_task_bypass : public task {
NodeType &my_node;
public:
source_task_bypass( NodeType &n ) : my_node(n) {}
task *execute() __TBB_override {
task *new_task = my_node.apply_body_bypass( );
if(new_task == SUCCESSFULLY_ENQUEUED) return NULL;
return new_task;
}
};
// ------------------------ end of node task bodies -----------------------------------
//! An empty functor that takes an Input and returns a default constructed Output
template< typename Input, typename Output >
struct empty_body {
Output operator()( const Input & ) const { return Output(); }
};
//! A node_cache maintains a std::queue of elements of type T. Each operation is protected by a lock.
template< typename T, typename M=spin_mutex >
class node_cache {
public:
typedef size_t size_type;
bool empty() {
typename mutex_type::scoped_lock lock( my_mutex );
return internal_empty();
}
void add( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
internal_push(n);
}
void remove( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
for ( size_t i = internal_size(); i != 0; --i ) {
T &s = internal_pop();
if ( &s == &n ) return; // only remove one predecessor per request
internal_push(s);
}
}
void clear() {
while( !my_q.empty()) (void)my_q.pop();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_predecessors.clear();
#endif
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef edge_container<T> built_predecessors_type;
built_predecessors_type &built_predecessors() { return my_built_predecessors; }
typedef typename edge_container<T>::edge_list_type predecessor_list_type;
void internal_add_built_predecessor( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
my_built_predecessors.add_edge(n);
}
void internal_delete_built_predecessor( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
my_built_predecessors.delete_edge(n);
}
void copy_predecessors( predecessor_list_type &v) {
typename mutex_type::scoped_lock lock( my_mutex );
my_built_predecessors.copy_edges(v);
}
size_t predecessor_count() {
typename mutex_type::scoped_lock lock(my_mutex);
return (size_t)(my_built_predecessors.edge_count());
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
typedef M mutex_type;
mutex_type my_mutex;
std::queue< T * > my_q;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
built_predecessors_type my_built_predecessors;
#endif
// Assumes lock is held
inline bool internal_empty( ) {
return my_q.empty();
}
// Assumes lock is held
inline size_type internal_size( ) {
return my_q.size();
}
// Assumes lock is held
inline void internal_push( T &n ) {
my_q.push(&n);
}
// Assumes lock is held
inline T &internal_pop() {
T *v = my_q.front();
my_q.pop();
return *v;
}
};
//! A cache of predecessors that only supports try_get
template< typename T, typename M=spin_mutex >
#if __TBB_PREVIEW_ASYNC_MSG
// TODO: make predecessor_cache type T-independent when async_msg becomes regular feature
class predecessor_cache : public node_cache< untyped_sender, M > {
#else
class predecessor_cache : public node_cache< sender<T>, M > {
#endif // __TBB_PREVIEW_ASYNC_MSG
public:
typedef M mutex_type;
typedef T output_type;
#if __TBB_PREVIEW_ASYNC_MSG
typedef untyped_sender predecessor_type;
typedef untyped_receiver successor_type;
#else
typedef sender<output_type> predecessor_type;
typedef receiver<output_type> successor_type;
#endif // __TBB_PREVIEW_ASYNC_MSG
predecessor_cache( ) : my_owner( NULL ) { }
void set_owner( successor_type *owner ) { my_owner = owner; }
bool get_item( output_type &v ) {
bool msg = false;
do {
predecessor_type *src;
{
typename mutex_type::scoped_lock lock(this->my_mutex);
if ( this->internal_empty() ) {
break;
}
src = &this->internal_pop();
}
// Try to get from this sender
msg = src->try_get( v );
if (msg == false) {
// Relinquish ownership of the edge
if (my_owner)
src->register_successor( *my_owner );
} else {
// Retain ownership of the edge
this->add(*src);
}
} while ( msg == false );
return msg;
}
// If we are removing arcs (rf_clear_edges), call clear() rather than reset().
void reset() {
if (my_owner) {
for(;;) {
predecessor_type *src;
{
if (this->internal_empty()) break;
src = &this->internal_pop();
}
src->register_successor( *my_owner );
}
}
}
protected:
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
using node_cache< predecessor_type, M >::my_built_predecessors;
#endif
successor_type *my_owner;
};
//! An cache of predecessors that supports requests and reservations
// TODO: make reservable_predecessor_cache type T-independent when async_msg becomes regular feature
template< typename T, typename M=spin_mutex >
class reservable_predecessor_cache : public predecessor_cache< T, M > {
public:
typedef M mutex_type;
typedef T output_type;
#if __TBB_PREVIEW_ASYNC_MSG
typedef untyped_sender predecessor_type;
typedef untyped_receiver successor_type;
#else
typedef sender<T> predecessor_type;
typedef receiver<T> successor_type;
#endif // __TBB_PREVIEW_ASYNC_MSG
reservable_predecessor_cache( ) : reserved_src(NULL) { }
bool
try_reserve( output_type &v ) {
bool msg = false;
do {
{
typename mutex_type::scoped_lock lock(this->my_mutex);
if ( reserved_src || this->internal_empty() )
return false;
reserved_src = &this->internal_pop();
}
// Try to get from this sender
msg = reserved_src->try_reserve( v );
if (msg == false) {
typename mutex_type::scoped_lock lock(this->my_mutex);
// Relinquish ownership of the edge
reserved_src->register_successor( *this->my_owner );
reserved_src = NULL;
} else {
// Retain ownership of the edge
this->add( *reserved_src );
}
} while ( msg == false );
return msg;
}
bool
try_release( ) {
reserved_src->try_release( );
reserved_src = NULL;
return true;
}
bool
try_consume( ) {
reserved_src->try_consume( );
reserved_src = NULL;
return true;
}
void reset( ) {
reserved_src = NULL;
predecessor_cache<T,M>::reset( );
}
void clear() {
reserved_src = NULL;
predecessor_cache<T,M>::clear();
}
private:
predecessor_type *reserved_src;
};
//! An abstract cache of successors
// TODO: make successor_cache type T-independent when async_msg becomes regular feature
template<typename T, typename M=spin_rw_mutex >
class successor_cache : tbb::internal::no_copy {
protected:
typedef M mutex_type;
mutex_type my_mutex;
#if __TBB_PREVIEW_ASYNC_MSG
typedef untyped_receiver successor_type;
typedef untyped_receiver *pointer_type;
typedef untyped_sender owner_type;
#else
typedef receiver<T> successor_type;
typedef receiver<T> *pointer_type;
typedef sender<T> owner_type;
#endif // __TBB_PREVIEW_ASYNC_MSG
typedef std::list< pointer_type > successors_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<successor_type> my_built_successors;
#endif
successors_type my_successors;
owner_type *my_owner;
public:
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename edge_container<successor_type>::edge_list_type successor_list_type;
edge_container<successor_type> &built_successors() { return my_built_successors; }
void internal_add_built_successor( successor_type &r) {
typename mutex_type::scoped_lock l(my_mutex, true);
my_built_successors.add_edge( r );
}
void internal_delete_built_successor( successor_type &r) {
typename mutex_type::scoped_lock l(my_mutex, true);
my_built_successors.delete_edge(r);
}
void copy_successors( successor_list_type &v) {
typename mutex_type::scoped_lock l(my_mutex, false);
my_built_successors.copy_edges(v);
}
size_t successor_count() {
typename mutex_type::scoped_lock l(my_mutex,false);
return my_built_successors.edge_count();
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
successor_cache( ) : my_owner(NULL) {}
void set_owner( owner_type *owner ) { my_owner = owner; }
virtual ~successor_cache() {}
void register_successor( successor_type &r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
my_successors.push_back( &r );
}
void remove_successor( successor_type &r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
for ( typename successors_type::iterator i = my_successors.begin();
i != my_successors.end(); ++i ) {
if ( *i == & r ) {
my_successors.erase(i);
break;
}
}
}
bool empty() {
typename mutex_type::scoped_lock l(my_mutex, false);
return my_successors.empty();
}
void clear() {
my_successors.clear();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_successors.clear();
#endif
}
#if !__TBB_PREVIEW_ASYNC_MSG
virtual task * try_put_task( const T &t ) = 0;
#endif // __TBB_PREVIEW_ASYNC_MSG
}; // successor_cache<T>
//! An abstract cache of successors, specialized to continue_msg
template<>
class successor_cache< continue_msg > : tbb::internal::no_copy {
protected:
typedef spin_rw_mutex mutex_type;
mutex_type my_mutex;
#if __TBB_PREVIEW_ASYNC_MSG
typedef untyped_receiver successor_type;
typedef untyped_receiver *pointer_type;
#else
typedef receiver<continue_msg> successor_type;
typedef receiver<continue_msg> *pointer_type;
#endif // __TBB_PREVIEW_ASYNC_MSG
typedef std::list< pointer_type > successors_type;
successors_type my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<successor_type> my_built_successors;
typedef edge_container<successor_type>::edge_list_type successor_list_type;
#endif
sender<continue_msg> *my_owner;
public:
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<successor_type> &built_successors() { return my_built_successors; }
void internal_add_built_successor( successor_type &r) {
mutex_type::scoped_lock l(my_mutex, true);
my_built_successors.add_edge( r );
}
void internal_delete_built_successor( successor_type &r) {
mutex_type::scoped_lock l(my_mutex, true);
my_built_successors.delete_edge(r);
}
void copy_successors( successor_list_type &v) {
mutex_type::scoped_lock l(my_mutex, false);
my_built_successors.copy_edges(v);
}
size_t successor_count() {
mutex_type::scoped_lock l(my_mutex,false);
return my_built_successors.edge_count();
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
successor_cache( ) : my_owner(NULL) {}
void set_owner( sender<continue_msg> *owner ) { my_owner = owner; }
virtual ~successor_cache() {}
void register_successor( successor_type &r ) {
mutex_type::scoped_lock l(my_mutex, true);
my_successors.push_back( &r );
if ( my_owner && r.is_continue_receiver() ) {
r.register_predecessor( *my_owner );
}
}
void remove_successor( successor_type &r ) {
mutex_type::scoped_lock l(my_mutex, true);
for ( successors_type::iterator i = my_successors.begin();
i != my_successors.end(); ++i ) {
if ( *i == & r ) {
// TODO: Check if we need to test for continue_receiver before
// removing from r.
if ( my_owner )
r.remove_predecessor( *my_owner );
my_successors.erase(i);
break;
}
}
}
bool empty() {
mutex_type::scoped_lock l(my_mutex, false);
return my_successors.empty();
}
void clear() {
my_successors.clear();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_successors.clear();
#endif
}
#if !__TBB_PREVIEW_ASYNC_MSG
virtual task * try_put_task( const continue_msg &t ) = 0;
#endif // __TBB_PREVIEW_ASYNC_MSG
}; // successor_cache< continue_msg >
//! A cache of successors that are broadcast to
// TODO: make broadcast_cache type T-independent when async_msg becomes regular feature
template<typename T, typename M=spin_rw_mutex>
class broadcast_cache : public successor_cache<T, M> {
typedef M mutex_type;
typedef typename successor_cache<T,M>::successors_type successors_type;
public:
broadcast_cache( ) {}
// as above, but call try_put_task instead, and return the last task we received (if any)
#if __TBB_PREVIEW_ASYNC_MSG
template<typename X>
task * try_put_task( const X &t ) {
#else
task * try_put_task( const T &t ) __TBB_override {
#endif // __TBB_PREVIEW_ASYNC_MSG
task * last_task = NULL;
bool upgraded = true;
typename mutex_type::scoped_lock l(this->my_mutex, upgraded);
typename successors_type::iterator i = this->my_successors.begin();
while ( i != this->my_successors.end() ) {
task *new_task = (*i)->try_put_task(t);
last_task = combine_tasks(last_task, new_task); // enqueue if necessary
if(new_task) {
++i;
}
else { // failed
if ( (*i)->register_predecessor(*this->my_owner) ) {
if (!upgraded) {
l.upgrade_to_writer();
upgraded = true;
}
i = this->my_successors.erase(i);
} else {
++i;
}
}
}
return last_task;
}
};
//! A cache of successors that are put in a round-robin fashion
// TODO: make round_robin_cache type T-independent when async_msg becomes regular feature
template<typename T, typename M=spin_rw_mutex >
class round_robin_cache : public successor_cache<T, M> {
typedef size_t size_type;
typedef M mutex_type;
typedef typename successor_cache<T,M>::successors_type successors_type;
public:
round_robin_cache( ) {}
size_type size() {
typename mutex_type::scoped_lock l(this->my_mutex, false);
return this->my_successors.size();
}
#if __TBB_PREVIEW_ASYNC_MSG
template<typename X>
task * try_put_task( const X &t ) {
#else
task *try_put_task( const T &t ) __TBB_override {
#endif // __TBB_PREVIEW_ASYNC_MSG
bool upgraded = true;
typename mutex_type::scoped_lock l(this->my_mutex, upgraded);
typename successors_type::iterator i = this->my_successors.begin();
while ( i != this->my_successors.end() ) {
task *new_task = (*i)->try_put_task(t);
if ( new_task ) {
return new_task;
} else {
if ( (*i)->register_predecessor(*this->my_owner) ) {
if (!upgraded) {
l.upgrade_to_writer();
upgraded = true;
}
i = this->my_successors.erase(i);
}
else {
++i;
}
}
}
return NULL;
}
};
template<typename T>
class decrementer : public continue_receiver, tbb::internal::no_copy {
T *my_node;
task *execute() __TBB_override {
return my_node->decrement_counter();
}
public:
typedef continue_msg input_type;
typedef continue_msg output_type;
decrementer( int number_of_predecessors = 0 ) : continue_receiver( number_of_predecessors ) { }
void set_owner( T *node ) { my_node = node; }
};
}
#endif // __TBB__flow_graph_impl_H