sustaining_gazes/lib/local/CppInerop/SequenceReader.h
2018-01-27 07:46:21 +00:00

401 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#pragma once
#pragma unmanaged
// Include all the unmanaged things we need.
#include <opencv2/core/core.hpp>
#include "opencv2/objdetect.hpp"
#include "opencv2/calib3d.hpp"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <vector>
#include <set>
#include <OpenCVWrappers.h>
#include <ImageReader.h>
#include "DeviceEnumerator.h"
#include "SequenceCapture.h"
#pragma managed
#include <msclr\marshal.h>
#include <msclr\marshal_cppstd.h>
namespace UtilitiesOF {
public ref class SequenceReader
{
private:
// OpenCV based video capture for reading from files
Utilities::SequenceCapture* m_sequence_capture;
OpenCVWrappers::RawImage^ m_rgb_frame;
OpenCVWrappers::RawImage^ m_gray_frame;
public:
// Can provide a directory or a video filename, need to specify which
SequenceReader(System::String^ filename, bool directory)
{
m_sequence_capture = new Utilities::SequenceCapture();
std::string name_std = msclr::interop::marshal_as<std::string>(filename);
bool success;
if(directory)
{
success = m_sequence_capture->OpenImageSequence(name_std);
}
else
{
success = m_sequence_capture->OpenVideoFile(name_std);
}
if (!success)
{
throw gcnew ReadingFailedException("Failed to open an image sequence");
}
}
// Can provide a webcam id
SequenceReader(int webcam_id, int width, int height)
{
m_sequence_capture = new Utilities::SequenceCapture();
bool success = m_sequence_capture->OpenWebcam(webcam_id, width, height);
if (!success)
{
throw gcnew ReadingFailedException("Failed to open an image sequence");
}
}
OpenCVWrappers::RawImage^ GetNextImage()
{
cv::Mat next_image = m_sequence_capture->GetNextFrame();
if (m_rgb_frame == nullptr)
{
m_rgb_frame = gcnew OpenCVWrappers::RawImage(next_image.size().width, next_image.size().width, CV_8UC3);
}
next_image.copyTo(m_rgb_frame->Mat);
return m_rgb_frame;
}
System::String^ GetName()
{
std::string filename = m_sequence_capture->name;
return gcnew System::String(filename.c_str());
}
double GetProgress()
{
return m_sequence_capture->GetProgress();
}
float GetFx()
{
return m_sequence_capture->fx;
}
float GetFy()
{
return m_sequence_capture->fy;
}
float GetCx()
{
return m_sequence_capture->cx;
}
float GetCy()
{
return m_sequence_capture->cy;
}
bool IsOpened()
{
return m_sequence_capture->IsOpened();
}
bool IsWebcam()
{
return m_sequence_capture->IsWebcam();
}
double GetFPS()
{
return m_sequence_capture->fps;
}
OpenCVWrappers::RawImage^ GetCurrentFrameGray() {
cv::Mat next_gray_image = m_sequence_capture->GetGrayFrame();
if (m_gray_frame == nullptr)
{
m_gray_frame = gcnew OpenCVWrappers::RawImage(next_gray_image.size().width, next_gray_image.size().width, CV_8UC3);
}
next_gray_image.copyTo(m_gray_frame->Mat);
return m_gray_frame;
}
void Close() {
m_sequence_capture->Close();
}
// Finalizer. Definitely called before Garbage Collection,
// but not automatically called on explicit Dispose().
// May be called multiple times.
!SequenceReader()
{
// Automatically closes capture object before freeing memory.
if (m_sequence_capture != nullptr)
{
delete m_sequence_capture;
}
if (m_rgb_frame != nullptr)
{
delete m_rgb_frame;
}
if (m_gray_frame != nullptr)
{
delete m_gray_frame;
}
}
// Destructor. Called on explicit Dispose() only.
~SequenceReader()
{
this->!SequenceReader();
}
private:
// Static methods for listing cameras and their resolutions
static void split(const std::string &s, char delim, std::vector<string> &elems) {
std::stringstream ss;
ss.str(s);
std::string item;
while (std::getline(ss, item, delim)) {
elems.push_back(item);
}
}
// Camera listing is camera name and supported resolutions
static Dictionary<System::String^, List<System::Tuple<int, int>^>^>^ GetListingFromFile(std::string filename)
{
// Check what cameras have been written (using OpenCVs XML packages)
cv::FileStorage fs_read(filename, cv::FileStorage::READ);
auto managed_camera_list_initial = gcnew Dictionary<System::String^, List<System::Tuple<int, int>^>^>();
cv::FileNode camera_node_list = fs_read["cameras"];
// iterate through a sequence using FileNodeIterator
for (size_t idx = 0; idx < camera_node_list.size(); idx++)
{
std::string camera_name = (std::string)camera_node_list[idx]["name"];
cv::FileNode resolution_list = camera_node_list[idx]["resolutions"];
auto resolutions = gcnew System::Collections::Generic::List<System::Tuple<int, int>^>();
for (size_t r_idx = 0; r_idx < resolution_list.size(); r_idx++)
{
string res = resolution_list[r_idx]["res"];
std::vector<std::string> elems;
split(res, 'x', elems);
int x = stoi(elems[0]);
int y = stoi(elems[1]);
resolutions->Add(gcnew System::Tuple<int, int>(x, y));
}
managed_camera_list_initial[gcnew System::String(camera_name.c_str())] = resolutions;
}
fs_read.release();
return managed_camera_list_initial;
}
static void WriteCameraListingToFile(System::Collections::Generic::Dictionary<System::String^, System::Collections::Generic::List<System::Tuple<int, int>^>^>^ camera_list, std::string filename)
{
cv::FileStorage fs("camera_list.xml", cv::FileStorage::WRITE);
fs << "cameras" << "[";
for each(System::String^ name_m in camera_list->Keys)
{
std::string name = msclr::interop::marshal_as<std::string>(name_m);
fs << "{:" << "name" << name;
fs << "resolutions" << "[";
auto resolutions = camera_list[name_m];
for (int j = 0; j < resolutions->Count; j++)
{
stringstream ss;
ss << resolutions[j]->Item1 << "x" << resolutions[j]->Item2;
fs << "{:" << "res" << ss.str();
fs << "}";
}
fs << "]";
fs << "}";
}
fs << "]";
fs.release();
}
// A utility for listing the currently connected cameras together with their ID, name, subset of supported resolutions and a thumbnail
public:
static List<System::Tuple<int, System::String^, List<System::Tuple<int, int>^>^, OpenCVWrappers::RawImage^>^>^ GetCameras(System::String^ root_directory_m)
{
auto managed_camera_list = gcnew List<System::Tuple<int, System::String^, List<System::Tuple<int, int>^>^, OpenCVWrappers::RawImage^>^>();
DeviceEnumerator de;
// Get a listing of all connected video devices
std::map<int, Device> cameras = de.getVideoDevicesMap();
//std::cout << "Number of cameras found: " << cameras.size() << std::endl;
//// Print information about the devices
//for (auto const &device : cameras) {
// std::cout << "== VIDEO DEVICE (id:" << device.first << ") ==" << std::endl;
// std::cout << "Name: " << device.second.deviceName << std::endl;
// std::cout << "Path: " << device.second.devicePath << std::endl;
//}
size_t num_cameras = cameras.size();
// Pre-load supported camera resolutions if already computed
std::string root_directory = msclr::interop::marshal_as<std::string>(root_directory_m);
auto camera_resolution_list = GetListingFromFile(root_directory + "camera_list.xml");
for (size_t i = 0; i < num_cameras; ++i)
{
// Thumbnail to help with camera selection
cv::Mat sample_img;
OpenCVWrappers::RawImage^ sample_img_managed = gcnew OpenCVWrappers::RawImage();
auto resolutions = gcnew List<System::Tuple<int, int>^>();
// Before trying the resolutions, check if the resolutions have already been computed for the camera of interest
std::string device_name = cameras[i].deviceName;
System::String^ device_name_m = gcnew System::String(device_name.c_str());
if (camera_resolution_list->ContainsKey(device_name_m))
{
resolutions = camera_resolution_list[device_name_m];
// Grab a thumbnail from mid resolution
cv::VideoCapture cap1(i);
auto resolution = resolutions[(int)(resolutions->Count / 2)];
cap1.set(CV_CAP_PROP_FRAME_WIDTH, resolution->Item1);
cap1.set(CV_CAP_PROP_FRAME_HEIGHT, resolution->Item2);
// Read several frames, as the first one often is over-exposed
for (int k = 0; k < 2; ++k)
cap1.read(sample_img);
}
else
{
// A common set of resolutions for webcams
std::vector<std::pair<int, int>> common_resolutions;
common_resolutions.push_back(std::pair<int, int>(320, 240));
common_resolutions.push_back(std::pair<int, int>(640, 480));
common_resolutions.push_back(std::pair<int, int>(800, 600));
common_resolutions.push_back(std::pair<int, int>(960, 720));
common_resolutions.push_back(std::pair<int, int>(1280, 720));
common_resolutions.push_back(std::pair<int, int>(1280, 960));
common_resolutions.push_back(std::pair<int, int>(1920, 1080));
// Grab some sample images and confirm the resolutions
cv::VideoCapture cap1(i);
// Go through resolutions if they have not been identified
for (size_t i = 0; i < common_resolutions.size(); ++i)
{
auto resolution = gcnew System::Tuple<int, int>(common_resolutions[i].first, common_resolutions[i].second);
cap1.set(CV_CAP_PROP_FRAME_WIDTH, resolution->Item1);
cap1.set(CV_CAP_PROP_FRAME_HEIGHT, resolution->Item2);
// Add only valid resolutions as API sometimes provides wrong ones
int set_width = cap1.get(CV_CAP_PROP_FRAME_WIDTH);
int set_height = cap1.get(CV_CAP_PROP_FRAME_HEIGHT);
// Grab a thumbnail from mid resolution
if (i == (int)common_resolutions.size() / 2)
{
// Read several frames, as the first one often is over-exposed
for (int k = 0; k < 2; ++k)
cap1.read(sample_img);
}
resolution = gcnew System::Tuple<int, int>(set_width, set_height);
if (!resolutions->Contains(resolution))
{
resolutions->Add(resolution);
}
}
cap1.~VideoCapture();
// Ass the resolutions were not on the list, add them now
camera_resolution_list[device_name_m] = resolutions;
WriteCameraListingToFile(camera_resolution_list, root_directory + "camera_list.xml");
}
sample_img.copyTo(sample_img_managed->Mat);
managed_camera_list->Add(gcnew System::Tuple<int, System::String^, List<System::Tuple<int, int>^>^, OpenCVWrappers::RawImage^>(i, device_name_m, resolutions, sample_img_managed));
}
return managed_camera_list;
}
};
}