159 lines
No EOL
6.5 KiB
C++
159 lines
No EOL
6.5 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
||
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
||
// all rights reserved.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
||
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
||
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
||
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
// POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
||
// of the Software may be covered by so-called “open source” software licenses (“Open Source
|
||
// Components”), which means any software licenses approved as open source licenses by the
|
||
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
||
// license that, as a condition of distribution of the software licensed under such license,
|
||
// requires that the distributor make the software available in source code format. Licensor shall
|
||
// provide a list of Open Source Components for a particular version of the Software upon
|
||
// Licensee’s request. Licensee will comply with the applicable terms of such licenses and to
|
||
// the extent required by the licenses covering Open Source Components, the terms of such
|
||
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
||
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
||
// License Agreement with respect to such Open Source Component, such restrictions will not
|
||
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
||
// Open Source Components require Licensor to make an offer to provide source code or
|
||
// related information in connection with the Software, such offer is hereby made. Any request
|
||
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
||
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
||
// delivery of the Software.
|
||
|
||
// * Any publications arising from the use of this software, including but
|
||
// not limited to academic journal and conference publications, technical
|
||
// reports and manuals, must cite at least one of the following works:
|
||
//
|
||
// OpenFace: an open source facial behavior analysis toolkit
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
||
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
||
//
|
||
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
||
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
||
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
||
//
|
||
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
||
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
||
// in Facial Expression Recognition and Analysis Challenge,
|
||
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
||
//
|
||
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
||
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
||
//
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
|
||
#include "SVM_dynamic_lin.h"
|
||
|
||
#include "LandmarkCoreIncludes.h"
|
||
|
||
using namespace FaceAnalysis;
|
||
|
||
void SVM_dynamic_lin::Read(std::ifstream& stream, const std::vector<std::string>& au_names)
|
||
{
|
||
|
||
if(this->means.empty())
|
||
{
|
||
LandmarkDetector::ReadMatBin(stream, this->means);
|
||
}
|
||
else
|
||
{
|
||
cv::Mat_<double> m_tmp;
|
||
LandmarkDetector::ReadMatBin(stream, m_tmp);
|
||
if(cv::norm(m_tmp - this->means > 0.00001))
|
||
{
|
||
cout << "Something went wrong with the SVM dynamic classifiers" << endl;
|
||
}
|
||
}
|
||
|
||
cv::Mat_<double> support_vectors_curr;
|
||
LandmarkDetector::ReadMatBin(stream, support_vectors_curr);
|
||
|
||
double bias;
|
||
stream.read((char *)&bias, 8);
|
||
|
||
// Read in positive or negative class
|
||
double pos_class;
|
||
stream.read((char *)&pos_class, 8);
|
||
|
||
double neg_class;
|
||
stream.read((char *)&neg_class, 8);
|
||
|
||
|
||
// Add a column vector to the matrix of support vectors (each column is a support vector)
|
||
if(!this->support_vectors.empty())
|
||
{
|
||
cv::transpose(this->support_vectors, this->support_vectors);
|
||
cv::transpose(support_vectors_curr, support_vectors_curr);
|
||
this->support_vectors.push_back(support_vectors_curr);
|
||
cv::transpose(this->support_vectors, this->support_vectors);
|
||
|
||
cv::transpose(this->biases, this->biases);
|
||
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
|
||
cv::transpose(this->biases, this->biases);
|
||
|
||
}
|
||
else
|
||
{
|
||
this->support_vectors.push_back(support_vectors_curr);
|
||
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
|
||
}
|
||
|
||
this->pos_classes.push_back(pos_class);
|
||
this->neg_classes.push_back(neg_class);
|
||
|
||
for(size_t i=0; i < au_names.size(); ++i)
|
||
{
|
||
this->AU_names.push_back(au_names[i]);
|
||
}
|
||
}
|
||
|
||
// Prediction using the HOG descriptor
|
||
void SVM_dynamic_lin::Predict(std::vector<double>& predictions, std::vector<std::string>& names, const cv::Mat_<double>& fhog_descriptor, const cv::Mat_<double>& geom_params, const cv::Mat_<double>& running_median, const cv::Mat_<double>& running_median_geom)
|
||
{
|
||
if(AU_names.size() > 0)
|
||
{
|
||
cv::Mat_<double> preds;
|
||
if(fhog_descriptor.cols == this->means.cols)
|
||
{
|
||
preds = (fhog_descriptor - this->means - running_median) * this->support_vectors + this->biases;
|
||
}
|
||
else
|
||
{
|
||
cv::Mat_<double> input;
|
||
cv::hconcat(fhog_descriptor, geom_params, input);
|
||
|
||
cv::Mat_<double> run_med;
|
||
cv::hconcat(running_median, running_median_geom, run_med);
|
||
|
||
preds = (input - this->means - run_med) * this->support_vectors + this->biases;
|
||
}
|
||
|
||
for(int i = 0; i < preds.cols; ++i)
|
||
{
|
||
if(preds.at<double>(i) > 0)
|
||
{
|
||
predictions.push_back(pos_classes[i]);
|
||
}
|
||
else
|
||
{
|
||
predictions.push_back(neg_classes[i]);
|
||
}
|
||
}
|
||
|
||
names = this->AU_names;
|
||
}
|
||
} |