sustaining_gazes/lib/local/LandmarkDetector/src/Patch_experts.cpp
2016-04-28 15:40:36 -04:00

571 lines
20 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "Patch_experts.h"
// OpenCV includes
#include <opencv2/core/core_c.h>
#include <opencv2/imgproc/imgproc_c.h>
// TBB includes
#include <tbb/tbb.h>
// Math includes
#define _USE_MATH_DEFINES
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#include "LandmarkDetectorUtils.h"
using namespace LandmarkDetector;
// A copy constructor
Patch_experts::Patch_experts(const Patch_experts& other) : patch_scaling(other.patch_scaling), centers(other.centers), svr_expert_intensity(other.svr_expert_intensity), svr_expert_depth(other.svr_expert_depth), ccnf_expert_intensity(other.ccnf_expert_intensity)
{
// Make sure the matrices are allocated properly
this->sigma_components.resize(other.sigma_components.size());
for (size_t i = 0; i < other.sigma_components.size(); ++i)
{
this->sigma_components[i].resize(other.sigma_components[i].size());
for (size_t j = 0; j < other.sigma_components[i].size(); ++j)
{
// Make sure the matrix is copied.
this->sigma_components[i][j] = other.sigma_components[i][j].clone();
}
}
// Make sure the matrices are allocated properly
this->visibilities.resize(other.visibilities.size());
for (size_t i = 0; i < other.visibilities.size(); ++i)
{
this->visibilities[i].resize(other.visibilities[i].size());
for (size_t j = 0; j < other.visibilities[i].size(); ++j)
{
// Make sure the matrix is copied.
this->visibilities[i][j] = other.visibilities[i][j].clone();
}
}
}
// Returns the patch expert responses given a grayscale and an optional depth image.
// Additionally returns the transform from the image coordinates to the response coordinates (and vice versa).
// The computation also requires the current landmark locations to compute response around, the PDM corresponding to the desired model, and the parameters describing its instance
// Also need to provide the size of the area of interest and the desired scale of analysis
void Patch_experts::Response(vector<cv::Mat_<float> >& patch_expert_responses, cv::Matx22f& sim_ref_to_img, cv::Matx22d& sim_img_to_ref, const cv::Mat_<uchar>& grayscale_image, const cv::Mat_<float>& depth_image,
const PDM& pdm, const cv::Vec6d& params_global, const cv::Mat_<double>& params_local, int window_size, int scale)
{
int view_id = GetViewIdx(params_global, scale);
int n = pdm.NumberOfPoints();
// Compute the current landmark locations (around which responses will be computed)
cv::Mat_<double> landmark_locations;
pdm.CalcShape2D(landmark_locations, params_local, params_global);
cv::Mat_<double> reference_shape;
// Initialise the reference shape on which we'll be warping
cv::Vec6d global_ref(patch_scaling[scale], 0, 0, 0, 0, 0);
// Compute the reference shape
pdm.CalcShape2D(reference_shape, params_local, global_ref);
// similarity and inverse similarity transform to and from image and reference shape
cv::Mat_<double> reference_shape_2D = (reference_shape.reshape(1, 2).t());
cv::Mat_<double> image_shape_2D = landmark_locations.reshape(1, 2).t();
sim_img_to_ref = AlignShapesWithScale(image_shape_2D, reference_shape_2D);
cv::Matx22d sim_ref_to_img_d = sim_img_to_ref.inv(cv::DECOMP_LU);
double a1 = sim_ref_to_img_d(0,0);
double b1 = -sim_ref_to_img_d(0,1);
sim_ref_to_img(0,0) = (float)sim_ref_to_img_d(0,0);
sim_ref_to_img(0,1) = (float)sim_ref_to_img_d(0,1);
sim_ref_to_img(1,0) = (float)sim_ref_to_img_d(1,0);
sim_ref_to_img(1,1) = (float)sim_ref_to_img_d(1,1);
// Indicates the legal pixels in a depth image, if available (used for CLM-Z area of interest (window) interpolation)
cv::Mat_<uchar> mask;
if(!depth_image.empty())
{
mask = depth_image > 0;
mask = mask / 255;
}
bool use_ccnf = !this->ccnf_expert_intensity.empty();
// If using CCNF patch experts might need to precalculate Sigmas
if(use_ccnf)
{
vector<cv::Mat_<float> > sigma_components;
// Retrieve the correct sigma component size
for( size_t w_size = 0; w_size < this->sigma_components.size(); ++w_size)
{
if(!this->sigma_components[w_size].empty())
{
if(window_size*window_size == this->sigma_components[w_size][0].rows)
{
sigma_components = this->sigma_components[w_size];
}
}
}
// Go through all of the landmarks and compute the Sigma for each
for( int lmark = 0; lmark < n; lmark++)
{
// Only for visible landmarks
if(visibilities[scale][view_id].at<int>(lmark,0))
{
// Precompute sigmas if they are not computed yet
ccnf_expert_intensity[scale][view_id][lmark].ComputeSigmas(sigma_components, window_size);
}
}
}
// calculate the patch responses for every landmark, Actual work happens here. If openMP is turned on it is possible to do this in parallel,
// this might work well on some machines, while potentially have an adverse effect on others
#ifdef _OPENMP
#pragma omp parallel for
#endif
tbb::parallel_for(0, (int)n, [&](int i){
//for(int i = 0; i < n; i++)
{
if(visibilities[scale][view_id].rows == n)
{
if(visibilities[scale][view_id].at<int>(i,0) != 0)
{
// Work out how big the area of interest has to be to get a response of window size
int area_of_interest_width;
int area_of_interest_height;
if(use_ccnf)
{
area_of_interest_width = window_size + ccnf_expert_intensity[scale][view_id][i].width - 1;
area_of_interest_height = window_size + ccnf_expert_intensity[scale][view_id][i].height - 1;
}
else
{
area_of_interest_width = window_size + svr_expert_intensity[scale][view_id][i].width - 1;
area_of_interest_height = window_size + svr_expert_intensity[scale][view_id][i].height - 1;
}
// scale and rotate to mean shape to reference frame
cv::Mat sim = (cv::Mat_<float>(2,3) << a1, -b1, landmark_locations.at<double>(i,0), b1, a1, landmark_locations.at<double>(i+n,0));
// Extract the region of interest around the current landmark location
cv::Mat_<float> area_of_interest(area_of_interest_height, area_of_interest_width);
// Using C style openCV as it does what we need
CvMat area_of_interest_o = area_of_interest;
CvMat sim_o = sim;
IplImage im_o = grayscale_image;
cvGetQuadrangleSubPix(&im_o, &area_of_interest_o, &sim_o);
// get the correct size response window
patch_expert_responses[i] = cv::Mat_<float>(window_size, window_size);
// Get intensity response either from the SVR or CCNF patch experts (prefer CCNF)
if(!ccnf_expert_intensity.empty())
{
ccnf_expert_intensity[scale][view_id][i].Response(area_of_interest, patch_expert_responses[i]);
}
else
{
svr_expert_intensity[scale][view_id][i].Response(area_of_interest, patch_expert_responses[i]);
}
// if we have a corresponding depth patch and it is visible
if(!svr_expert_depth.empty() && !depth_image.empty() && visibilities[scale][view_id].at<int>(i,0))
{
cv::Mat_<float> dProb = patch_expert_responses[i].clone();
cv::Mat_<float> depthWindow(area_of_interest_height, area_of_interest_width);
CvMat dimg_o = depthWindow;
cv::Mat maskWindow(area_of_interest_height, area_of_interest_width, CV_32F);
CvMat mimg_o = maskWindow;
IplImage d_o = depth_image;
IplImage m_o = mask;
cvGetQuadrangleSubPix(&d_o,&dimg_o,&sim_o);
cvGetQuadrangleSubPix(&m_o,&mimg_o,&sim_o);
depthWindow.setTo(0, maskWindow < 1);
svr_expert_depth[scale][view_id][i].ResponseDepth(depthWindow, dProb);
// Sum to one
double sum = cv::sum(patch_expert_responses[i])[0];
// To avoid division by 0 issues
if(sum == 0)
{
sum = 1;
}
patch_expert_responses[i] /= sum;
// Sum to one
sum = cv::sum(dProb)[0];
// To avoid division by 0 issues
if(sum == 0)
{
sum = 1;
}
dProb /= sum;
patch_expert_responses[i] = patch_expert_responses[i] + dProb;
}
}
}
}
});
}
//=============================================================================
// Getting the closest view center based on orientation
int Patch_experts::GetViewIdx(const cv::Vec6d& params_global, int scale) const
{
int idx = 0;
double dbest;
for(int i = 0; i < this->nViews(scale); i++)
{
double v1 = params_global[1] - centers[scale][i][0];
double v2 = params_global[2] - centers[scale][i][1];
double v3 = params_global[3] - centers[scale][i][2];
double d = v1*v1 + v2*v2 + v3*v3;
if(i == 0 || d < dbest)
{
dbest = d;
idx = i;
}
}
return idx;
}
//===========================================================================
void Patch_experts::Read(vector<string> intensity_svr_expert_locations, vector<string> depth_svr_expert_locations, vector<string> intensity_ccnf_expert_locations)
{
// initialise the SVR intensity patch expert parameters
int num_intensity_svr = intensity_svr_expert_locations.size();
centers.resize(num_intensity_svr);
visibilities.resize(num_intensity_svr);
patch_scaling.resize(num_intensity_svr);
svr_expert_intensity.resize(num_intensity_svr);
// Reading in SVR intensity patch experts for each scales it is defined in
for(int scale = 0; scale < num_intensity_svr; ++scale)
{
string location = intensity_svr_expert_locations[scale];
cout << "Reading the intensity SVR patch experts from: " << location << "....";
Read_SVR_patch_experts(location, centers[scale], visibilities[scale], svr_expert_intensity[scale], patch_scaling[scale]);
}
// Initialise and read CCNF patch experts (currently only intensity based),
int num_intensity_ccnf = intensity_ccnf_expert_locations.size();
// CCNF experts override the SVR ones
if(num_intensity_ccnf > 0)
{
centers.resize(num_intensity_ccnf);
visibilities.resize(num_intensity_ccnf);
patch_scaling.resize(num_intensity_ccnf);
ccnf_expert_intensity.resize(num_intensity_ccnf);
}
for(int scale = 0; scale < num_intensity_ccnf; ++scale)
{
string location = intensity_ccnf_expert_locations[scale];
cout << "Reading the intensity CCNF patch experts from: " << location << "....";
Read_CCNF_patch_experts(location, centers[scale], visibilities[scale], ccnf_expert_intensity[scale], patch_scaling[scale]);
}
// initialise the SVR depth patch expert parameters
int num_depth_scales = depth_svr_expert_locations.size();
int num_intensity_scales = centers.size();
if(num_depth_scales > 0 && num_intensity_scales != num_depth_scales)
{
cout << "Intensity and depth patch experts have a different number of scales, can't read depth" << endl;
return;
}
// Have these to confirm that depth patch experts have the same number of views and scales and have the same visibilities
vector<vector<cv::Vec3d> > centers_depth(num_depth_scales);
vector<vector<cv::Mat_<int> > > visibilities_depth(num_depth_scales);
vector<double> patch_scaling_depth(num_depth_scales);
svr_expert_depth.resize(num_depth_scales);
// Reading in SVR intensity patch experts for each scales it is defined in
for(int scale = 0; scale < num_depth_scales; ++scale)
{
string location = depth_svr_expert_locations[scale];
cout << "Reading the depth SVR patch experts from: " << location << "....";
Read_SVR_patch_experts(location, centers_depth[scale], visibilities_depth[scale], svr_expert_depth[scale], patch_scaling_depth[scale]);
// Check if the scales are identical
if(patch_scaling_depth[scale] != patch_scaling[scale])
{
cout << "Intensity and depth patch experts have a different scales, can't read depth" << endl;
svr_expert_depth.clear();
return;
}
int num_views_intensity = centers[scale].size();
int num_views_depth = centers_depth[scale].size();
// Check if the number of views is identical
if(num_views_intensity != num_views_depth)
{
cout << "Intensity and depth patch experts have a different number of scales, can't read depth" << endl;
svr_expert_depth.clear();
return;
}
for(int view = 0; view < num_views_depth; ++view)
{
if(cv::countNonZero(centers_depth[scale][view] != centers[scale][view]) || cv::countNonZero(visibilities[scale][view] != visibilities_depth[scale][view]))
{
cout << "Intensity and depth patch experts have different visibilities or centers" << endl;
svr_expert_depth.clear();
return;
}
}
}
}
//======================= Reading the SVR patch experts =========================================//
void Patch_experts::Read_SVR_patch_experts(string expert_location, std::vector<cv::Vec3d>& centers, std::vector<cv::Mat_<int> >& visibility, std::vector<std::vector<Multi_SVR_patch_expert> >& patches, double& scale)
{
ifstream patchesFile(expert_location.c_str(), ios_base::in);
if(patchesFile.is_open())
{
LandmarkDetector::SkipComments(patchesFile);
patchesFile >> scale;
LandmarkDetector::SkipComments(patchesFile);
int numberViews;
patchesFile >> numberViews;
// read the visibility
centers.resize(numberViews);
visibility.resize(numberViews);
patches.resize(numberViews);
LandmarkDetector::SkipComments(patchesFile);
// centers of each view (which view corresponds to which orientation)
for(size_t i = 0; i < centers.size(); i++)
{
cv::Mat center;
LandmarkDetector::ReadMat(patchesFile, center);
center.copyTo(centers[i]);
centers[i] = centers[i] * M_PI / 180.0;
}
LandmarkDetector::SkipComments(patchesFile);
// the visibility of points for each of the views (which verts are visible at a specific view
for(size_t i = 0; i < visibility.size(); i++)
{
LandmarkDetector::ReadMat(patchesFile, visibility[i]);
}
int numberOfPoints = visibility[0].rows;
LandmarkDetector::SkipComments(patchesFile);
// read the patches themselves
for(size_t i = 0; i < patches.size(); i++)
{
// number of patches for each view
patches[i].resize(numberOfPoints);
// read in each patch
for(int j = 0; j < numberOfPoints; j++)
{
patches[i][j].Read(patchesFile);
}
}
cout << "Done" << endl;
}
else
{
cout << "Can't find/open the patches file" << endl;
}
}
//======================= Reading the CCNF patch experts =========================================//
void Patch_experts::Read_CCNF_patch_experts(string patchesFileLocation, std::vector<cv::Vec3d>& centers, std::vector<cv::Mat_<int> >& visibility, std::vector<std::vector<CCNF_patch_expert> >& patches, double& patchScaling)
{
ifstream patchesFile(patchesFileLocation.c_str(), ios::in | ios::binary);
if(patchesFile.is_open())
{
patchesFile.read ((char*)&patchScaling, 8);
int numberViews;
patchesFile.read ((char*)&numberViews, 4);
// read the visibility
centers.resize(numberViews);
visibility.resize(numberViews);
patches.resize(numberViews);
// centers of each view (which view corresponds to which orientation)
for(size_t i = 0; i < centers.size(); i++)
{
cv::Mat center;
LandmarkDetector::ReadMatBin(patchesFile, center);
center.copyTo(centers[i]);
centers[i] = centers[i] * M_PI / 180.0;
}
// the visibility of points for each of the views (which verts are visible at a specific view
for(size_t i = 0; i < visibility.size(); i++)
{
LandmarkDetector::ReadMatBin(patchesFile, visibility[i]);
}
int numberOfPoints = visibility[0].rows;
// Read the possible SigmaInvs (without beta), this will be followed by patch reading (this assumes all of them have the same type, and number of betas)
int num_win_sizes;
int num_sigma_comp;
patchesFile.read ((char*)&num_win_sizes, 4);
vector<int> windows;
windows.resize(num_win_sizes);
vector<vector<cv::Mat_<float> > > sigma_components;
sigma_components.resize(num_win_sizes);
for (int w=0; w < num_win_sizes; ++w)
{
patchesFile.read ((char*)&windows[w], 4);
patchesFile.read ((char*)&num_sigma_comp, 4);
sigma_components[w].resize(num_sigma_comp);
for(int s=0; s < num_sigma_comp; ++s)
{
LandmarkDetector::ReadMatBin(patchesFile, sigma_components[w][s]);
}
}
this->sigma_components = sigma_components;
// read the patches themselves
for(size_t i = 0; i < patches.size(); i++)
{
// number of patches for each view
patches[i].resize(numberOfPoints);
// read in each patch
for(int j = 0; j < numberOfPoints; j++)
{
patches[i][j].Read(patchesFile, windows, sigma_components);
}
}
cout << "Done" << endl;
}
else
{
cout << "Can't find/open the patches file" << endl;
}
}