305af01326
- Adding new license files - Replacing images with more suitable CC ones
147 lines
8.4 KiB
C++
147 lines
8.4 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Header for all external CLNF/CLM-Z/CLM methods of interest to the user
|
|
#ifndef __LANDMARK_DETECTOR_UTILS_h_
|
|
#define __LANDMARK_DETECTOR_UTILS_h_
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
#include "LandmarkDetectorModel.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace LandmarkDetector
|
|
{
|
|
//===========================================================================
|
|
// Defining a set of useful utility functions to be used within CLNF
|
|
|
|
|
|
//=============================================================================================
|
|
// Helper functions for parsing the inputs
|
|
//=============================================================================================
|
|
void get_video_input_output_params(vector<string> &input_video_file, vector<string> &depth_dir, vector<string> &output_files,
|
|
vector<string> &output_video_files, bool& world_coordinates_pose, string &output_codec, vector<string> &arguments);
|
|
|
|
void get_camera_params(int &device, float &fx, float &fy, float &cx, float &cy, vector<string> &arguments);
|
|
|
|
void get_image_input_output_params(vector<string> &input_image_files, vector<string> &input_depth_files, vector<string> &output_feature_files, vector<string> &output_pose_files, vector<string> &output_image_files,
|
|
vector<cv::Rect_<double>> &input_bounding_boxes, vector<string> &arguments);
|
|
|
|
//===========================================================================
|
|
// Fast patch expert response computation (linear model across a ROI) using normalised cross-correlation
|
|
//===========================================================================
|
|
// This is a modified version of openCV code that allows for precomputed dfts of templates and for precomputed dfts of an image
|
|
// _img is the input img, _img_dft it's dft (optional), _integral_img the images integral image (optional), squared integral image (optional),
|
|
// templ is the template we are convolving with, templ_dfts it's dfts at varying windows sizes (optional), _result - the output, method the type of convolution
|
|
void matchTemplate_m( const cv::Mat_<float>& input_img, cv::Mat_<double>& img_dft, cv::Mat& _integral_img, cv::Mat& _integral_img_sq, const cv::Mat_<float>& templ, map<int, cv::Mat_<double> >& templ_dfts, cv::Mat_<float>& result, int method );
|
|
|
|
//===========================================================================
|
|
// Point set and landmark manipulation functions
|
|
//===========================================================================
|
|
// Using Kabsch's algorithm for aligning shapes
|
|
//This assumes that align_from and align_to are already mean normalised
|
|
cv::Matx22d AlignShapesKabsch2D(const cv::Mat_<double>& align_from, const cv::Mat_<double>& align_to );
|
|
|
|
//=============================================================================
|
|
// Basically Kabsch's algorithm but also allows the collection of points to be different in scale from each other
|
|
cv::Matx22d AlignShapesWithScale(cv::Mat_<double>& src, cv::Mat_<double> dst);
|
|
|
|
//===========================================================================
|
|
// Visualisation functions
|
|
//===========================================================================
|
|
void Project(cv::Mat_<double>& dest, const cv::Mat_<double>& mesh, double fx, double fy, double cx, double cy);
|
|
void DrawBox(cv::Mat image, cv::Vec6d pose, cv::Scalar color, int thickness, float fx, float fy, float cx, float cy);
|
|
|
|
// Drawing face bounding box
|
|
vector<std::pair<cv::Point2d, cv::Point2d>> CalculateBox(cv::Vec6d pose, float fx, float fy, float cx, float cy);
|
|
void DrawBox(vector<pair<cv::Point, cv::Point>> lines, cv::Mat image, cv::Scalar color, int thickness);
|
|
|
|
vector<cv::Point2d> CalculateLandmarks(const cv::Mat_<double>& shape2D, cv::Mat_<int>& visibilities);
|
|
vector<cv::Point2d> CalculateLandmarks(CLNF& clnf_model);
|
|
void DrawLandmarks(cv::Mat img, vector<cv::Point> landmarks);
|
|
|
|
void Draw(cv::Mat img, const cv::Mat_<double>& shape2D, const cv::Mat_<int>& visibilities);
|
|
void Draw(cv::Mat img, const cv::Mat_<double>& shape2D);
|
|
void Draw(cv::Mat img, const CLNF& clnf_model);
|
|
|
|
|
|
//===========================================================================
|
|
// Angle representation conversion helpers
|
|
//===========================================================================
|
|
cv::Matx33d Euler2RotationMatrix(const cv::Vec3d& eulerAngles);
|
|
|
|
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
|
|
cv::Vec3d RotationMatrix2Euler(const cv::Matx33d& rotation_matrix);
|
|
|
|
cv::Vec3d Euler2AxisAngle(const cv::Vec3d& euler);
|
|
|
|
cv::Vec3d AxisAngle2Euler(const cv::Vec3d& axis_angle);
|
|
|
|
cv::Matx33d AxisAngle2RotationMatrix(const cv::Vec3d& axis_angle);
|
|
|
|
cv::Vec3d RotationMatrix2AxisAngle(const cv::Matx33d& rotation_matrix);
|
|
|
|
//============================================================================
|
|
// Face detection helpers
|
|
//============================================================================
|
|
|
|
// Face detection using Haar cascade classifier
|
|
bool DetectFaces(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity);
|
|
bool DetectFaces(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, cv::CascadeClassifier& classifier);
|
|
// The preference point allows for disambiguation if multiple faces are present (pick the closest one), if it is not set the biggest face is chosen
|
|
bool DetectSingleFace(cv::Rect_<double>& o_region, const cv::Mat_<uchar>& intensity, cv::CascadeClassifier& classifier, const cv::Point preference = cv::Point(-1,-1));
|
|
|
|
// Face detection using HOG-SVM classifier
|
|
bool DetectFacesHOG(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, std::vector<double>& confidences);
|
|
bool DetectFacesHOG(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, dlib::frontal_face_detector& classifier, std::vector<double>& confidences);
|
|
// The preference point allows for disambiguation if multiple faces are present (pick the closest one), if it is not set the biggest face is chosen
|
|
bool DetectSingleFaceHOG(cv::Rect_<double>& o_region, const cv::Mat_<uchar>& intensity, dlib::frontal_face_detector& classifier, double& confidence, const cv::Point preference = cv::Point(-1,-1));
|
|
|
|
//============================================================================
|
|
// Matrix reading functionality
|
|
//============================================================================
|
|
|
|
// Reading a matrix written in a binary format
|
|
void ReadMatBin(std::ifstream& stream, cv::Mat &output_mat);
|
|
|
|
// Reading in a matrix from a stream
|
|
void ReadMat(std::ifstream& stream, cv::Mat& output_matrix);
|
|
|
|
// Skipping comments (lines starting with # symbol)
|
|
void SkipComments(std::ifstream& stream);
|
|
|
|
}
|
|
#endif
|