sustaining_gazes/exe/FeatureExtraction/FeatureExtraction.cpp
2016-12-05 17:28:39 -05:00

1301 lines
36 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FeatureExtraction.cpp : Defines the entry point for the feature extraction console application.
// System includes
#include <fstream>
#include <sstream>
// OpenCV includes
#include <opencv2/videoio/videoio.hpp> // Video write
#include <opencv2/videoio/videoio_c.h> // Video write
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
// Boost includes
#include <filesystem.hpp>
#include <filesystem/fstream.hpp>
#include <boost/algorithm/string.hpp>
// Local includes
#include "LandmarkCoreIncludes.h"
#include <Face_utils.h>
#include <FaceAnalyser.h>
#include <GazeEstimation.h>
#define INFO_STREAM( stream ) \
std::cout << stream << std::endl
#define WARN_STREAM( stream ) \
std::cout << "Warning: " << stream << std::endl
#define ERROR_STREAM( stream ) \
std::cout << "Error: " << stream << std::endl
static void printErrorAndAbort( const std::string & error )
{
std::cout << error << std::endl;
}
#define FATAL_STREAM( stream ) \
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
using namespace std;
using namespace boost::filesystem;
vector<string> get_arguments(int argc, char **argv)
{
vector<string> arguments;
// First argument is reserved for the name of the executable
for(int i = 0; i < argc; ++i)
{
arguments.push_back(string(argv[i]));
}
return arguments;
}
// Useful utility for creating directories for storing the output files
void create_directory_from_file(string output_path)
{
// Creating the right directory structure
// First get rid of the file
auto p = path(path(output_path).parent_path());
if(!p.empty() && !boost::filesystem::exists(p))
{
bool success = boost::filesystem::create_directories(p);
if(!success)
{
cout << "Failed to create a directory... " << p.string() << endl;
}
}
}
void create_directory(string output_path)
{
// Creating the right directory structure
auto p = path(output_path);
if(!boost::filesystem::exists(p))
{
bool success = boost::filesystem::create_directories(p);
if(!success)
{
cout << "Failed to create a directory..." << p.string() << endl;
}
}
}
void get_output_feature_params(vector<string> &output_similarity_aligned, vector<string> &output_hog_aligned_files, double &similarity_scale,
int &similarity_size, bool &grayscale, bool& verbose, bool& dynamic, bool &output_2D_landmarks, bool &output_3D_landmarks,
bool &output_model_params, bool &output_pose, bool &output_AUs, bool &output_gaze, vector<string> &arguments);
void get_image_input_output_params_feats(vector<vector<string> > &input_image_files, bool& as_video, vector<string> &arguments);
void output_HOG_frame(std::ofstream* hog_file, bool good_frame, const cv::Mat_<double>& hog_descriptor, int num_rows, int num_cols);
// Some globals for tracking timing information for visualisation
double fps_tracker = -1.0;
int64 t0 = 0;
// Visualising the results
void visualise_tracking(cv::Mat& captured_image, const LandmarkDetector::CLNF& face_model, const LandmarkDetector::FaceModelParameters& det_parameters, cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, int frame_count, double fx, double fy, double cx, double cy)
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model.detection_certainty;
bool detection_success = face_model.detection_success;
double visualisation_boundary = 0.2;
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if (detection_certainty < visualisation_boundary)
{
LandmarkDetector::Draw(captured_image, face_model);
double vis_certainty = detection_certainty;
if (vis_certainty > 1)
vis_certainty = 1;
if (vis_certainty < -1)
vis_certainty = -1;
vis_certainty = (vis_certainty + 1) / (visualisation_boundary + 1);
// A rough heuristic for box around the face width
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector::DrawBox(captured_image, pose_estimate_to_draw, cv::Scalar((1 - vis_certainty)*255.0, 0, vis_certainty * 255), thickness, fx, fy, cx, cy);
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
{
FaceAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
}
}
// Work out the framerate
if (frame_count % 10 == 0)
{
double t1 = cv::getTickCount();
fps_tracker = 10.0 / (double(t1 - t0) / cv::getTickFrequency());
t0 = t1;
}
// Write out the framerate on the image before displaying it
char fpsC[255];
std::sprintf(fpsC, "%d", (int)fps_tracker);
string fpsSt("FPS:");
fpsSt += fpsC;
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
if (!det_parameters.quiet_mode)
{
cv::namedWindow("tracking_result", 1);
cv::imshow("tracking_result", captured_image);
}
}
void prepareOutputFile(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks,
bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
int num_landmarks, int num_model_modes, vector<string> au_names_class, vector<string> au_names_reg);
// Output all of the information into one file in one go (quite a few parameters, but simplifies the flow)
void outputAllFeatures(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks,
bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
const LandmarkDetector::CLNF& face_model, int frame_count, double time_stamp, bool detection_success,
cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, cv::Vec2d gaze_angle, const cv::Vec6d& pose_estimate, double fx, double fy, double cx, double cy,
const FaceAnalysis::FaceAnalyser& face_analyser);
void post_process_output_file(FaceAnalysis::FaceAnalyser& face_analyser, string output_file, bool dynamic);
int main (int argc, char **argv)
{
vector<string> arguments = get_arguments(argc, argv);
// Some initial parameters that can be overriden from command line
vector<string> input_files, depth_directories, output_files, tracked_videos_output;
LandmarkDetector::FaceModelParameters det_parameters(arguments);
// Always track gaze in feature extraction
det_parameters.track_gaze = true;
// Get the input output file parameters
// Indicates that rotation should be with respect to camera or world coordinates
string output_codec; //not used but should
LandmarkDetector::get_video_input_output_params(input_files, depth_directories, output_files, tracked_videos_output, output_codec, arguments);
bool video_input = true;
bool verbose = true;
bool images_as_video = false;
vector<vector<string> > input_image_files;
// Adding image support for reading in the files
if(input_files.empty())
{
vector<string> d_files;
vector<string> o_img;
vector<cv::Rect_<double>> bboxes;
get_image_input_output_params_feats(input_image_files, images_as_video, arguments);
if(!input_image_files.empty())
{
video_input = false;
}
}
// Grab camera parameters, if they are not defined (approximate values will be used)
float fx = 0, fy = 0, cx = 0, cy = 0;
int d = 0;
// Get camera parameters
LandmarkDetector::get_camera_params(d, fx, fy, cx, cy, arguments);
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
bool cx_undefined = false;
bool fx_undefined = false;
if (cx == 0 || cy == 0)
{
cx_undefined = true;
}
if (fx == 0 || fy == 0)
{
fx_undefined = true;
}
// The modules that are being used for tracking
LandmarkDetector::CLNF face_model(det_parameters.model_location);
vector<string> output_similarity_align;
vector<string> output_hog_align_files;
double sim_scale = -1;
int sim_size = 112;
bool grayscale = false;
bool video_output = false;
bool dynamic = true; // Indicates if a dynamic AU model should be used (dynamic is useful if the video is long enough to include neutral expressions)
int num_hog_rows;
int num_hog_cols;
// By default output all parameters, but these can be turned off to get smaller files or slightly faster processing times
// use -no2Dfp, -no3Dfp, -noMparams, -noPose, -noAUs, -noGaze to turn them off
bool output_2D_landmarks = true;
bool output_3D_landmarks = true;
bool output_model_params = true;
bool output_pose = true;
bool output_AUs = true;
bool output_gaze = true;
get_output_feature_params(output_similarity_align, output_hog_align_files, sim_scale, sim_size, grayscale, verbose, dynamic,
output_2D_landmarks, output_3D_landmarks, output_model_params, output_pose, output_AUs, output_gaze, arguments);
// Used for image masking
string tri_loc;
if(boost::filesystem::exists(path("model/tris_68_full.txt")))
{
tri_loc = "model/tris_68_full.txt";
}
else
{
path loc = path(arguments[0]).parent_path() / "model/tris_68_full.txt";
tri_loc = loc.string();
if(!exists(loc))
{
cout << "Can't find triangulation files, exiting" << endl;
return 1;
}
}
// If multiple video files are tracked, use this to indicate if we are done
bool done = false;
int f_n = -1;
int curr_img = -1;
string au_loc;
string au_loc_local;
if (dynamic)
{
au_loc_local = "AU_predictors/AU_all_best.txt";
}
else
{
au_loc_local = "AU_predictors/AU_all_static.txt";
}
if(boost::filesystem::exists(path(au_loc_local)))
{
au_loc = au_loc_local;
}
else
{
path loc = path(arguments[0]).parent_path() / au_loc_local;
if(exists(loc))
{
au_loc = loc.string();
}
else
{
cout << "Can't find AU prediction files, exiting" << endl;
return 1;
}
}
// Creating a face analyser that will be used for AU extraction
// Make sure sim_scale is proportional to sim_size if not set
if (sim_scale == -1) sim_scale = sim_size * (0.7 / 112.0);
FaceAnalysis::FaceAnalyser face_analyser(vector<cv::Vec3d>(), sim_scale, sim_size, sim_size, au_loc, tri_loc);
while(!done) // this is not a for loop as we might also be reading from a webcam
{
string current_file;
cv::VideoCapture video_capture;
cv::Mat captured_image;
int total_frames = -1;
int reported_completion = 0;
double fps_vid_in = -1.0;
if(video_input)
{
// We might specify multiple video files as arguments
if(input_files.size() > 0)
{
f_n++;
current_file = input_files[f_n];
}
else
{
// If we want to write out from webcam
f_n = 0;
}
// Do some grabbing
if( current_file.size() > 0 )
{
INFO_STREAM( "Attempting to read from file: " << current_file );
video_capture = cv::VideoCapture( current_file );
total_frames = (int)video_capture.get(CV_CAP_PROP_FRAME_COUNT);
fps_vid_in = video_capture.get(CV_CAP_PROP_FPS);
// Check if fps is nan or less than 0
if (fps_vid_in != fps_vid_in || fps_vid_in <= 0)
{
INFO_STREAM("FPS of the video file cannot be determined, assuming 30");
fps_vid_in = 30;
}
}
if (!video_capture.isOpened())
{
FATAL_STREAM("Failed to open video source, exiting");
return 1;
}
else
{
INFO_STREAM("Device or file opened");
}
video_capture >> captured_image;
}
else
{
f_n++;
curr_img++;
if(!input_image_files[f_n].empty())
{
string curr_img_file = input_image_files[f_n][curr_img];
captured_image = cv::imread(curr_img_file, -1);
}
else
{
FATAL_STREAM( "No .jpg or .png images in a specified drectory, exiting" );
return 1;
}
}
// If optical centers are not defined just use center of image
if(cx_undefined)
{
cx = captured_image.cols / 2.0f;
cy = captured_image.rows / 2.0f;
}
// Use a rough guess-timate of focal length
if (fx_undefined)
{
fx = 500 * (captured_image.cols / 640.0);
fy = 500 * (captured_image.rows / 480.0);
fx = (fx + fy) / 2.0;
fy = fx;
}
// Creating output files
std::ofstream output_file;
if (!output_files.empty())
{
output_file.open(output_files[f_n], ios_base::out);
prepareOutputFile(&output_file, output_2D_landmarks, output_3D_landmarks, output_model_params, output_pose, output_AUs, output_gaze, face_model.pdm.NumberOfPoints(), face_model.pdm.NumberOfModes(), face_analyser.GetAUClassNames(), face_analyser.GetAURegNames());
}
// Saving the HOG features
std::ofstream hog_output_file;
if(!output_hog_align_files.empty())
{
hog_output_file.open(output_hog_align_files[f_n], ios_base::out | ios_base::binary);
}
// saving the videos
cv::VideoWriter writerFace;
if(!tracked_videos_output.empty())
{
try
{
writerFace = cv::VideoWriter(tracked_videos_output[f_n], CV_FOURCC(output_codec[0],output_codec[1],output_codec[2],output_codec[3]), fps_vid_in, captured_image.size(), true);
}
catch(cv::Exception e)
{
WARN_STREAM( "Could not open VideoWriter, OUTPUT FILE WILL NOT BE WRITTEN. Currently using codec " << output_codec << ", try using an other one (-oc option)");
}
}
int frame_count = 0;
// This is useful for a second pass run (if want AU predictions)
vector<cv::Vec6d> params_global_video;
vector<bool> successes_video;
vector<cv::Mat_<double>> params_local_video;
vector<cv::Mat_<double>> detected_landmarks_video;
// Use for timestamping if using a webcam
int64 t_initial = cv::getTickCount();
bool visualise_hog = verbose;
// Timestamp in seconds of current processing
double time_stamp = 0;
INFO_STREAM( "Starting tracking");
while(!captured_image.empty())
{
// Grab the timestamp first
if (video_input)
{
time_stamp = (double)frame_count * (1.0 / fps_vid_in);
}
else
{
// if loading images assume 30fps
time_stamp = (double)frame_count * (1.0 / 30.0);
}
// Reading the images
cv::Mat_<uchar> grayscale_image;
if(captured_image.channels() == 3)
{
cvtColor(captured_image, grayscale_image, CV_BGR2GRAY);
}
else
{
grayscale_image = captured_image.clone();
}
// The actual facial landmark detection / tracking
bool detection_success;
if(video_input || images_as_video)
{
detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_model, det_parameters);
}
else
{
detection_success = LandmarkDetector::DetectLandmarksInImage(grayscale_image, face_model, det_parameters);
}
// Work out the pose of the head from the tracked model
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
// Gaze tracking, absolute gaze direction
cv::Point3f gazeDirection0(0, 0, -1);
cv::Point3f gazeDirection1(0, 0, -1);
cv::Vec2d gazeAngle(0, 0);
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
{
FaceAnalysis::EstimateGaze(face_model, gazeDirection0, fx, fy, cx, cy, true);
FaceAnalysis::EstimateGaze(face_model, gazeDirection1, fx, fy, cx, cy, false);
gazeAngle = FaceAnalysis::GetGazeAngle(gazeDirection0, gazeDirection1, pose_estimate);
}
// Do face alignment
cv::Mat sim_warped_img;
cv::Mat_<double> hog_descriptor;
// But only if needed in output
if(!output_similarity_align.empty() || hog_output_file.is_open() || output_AUs)
{
face_analyser.AddNextFrame(captured_image, face_model, time_stamp, false, !det_parameters.quiet_mode);
face_analyser.GetLatestAlignedFace(sim_warped_img);
if(!det_parameters.quiet_mode)
{
cv::imshow("sim_warp", sim_warped_img);
}
if(hog_output_file.is_open())
{
face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols);
if(visualise_hog && !det_parameters.quiet_mode)
{
cv::Mat_<double> hog_descriptor_vis;
FaceAnalysis::Visualise_FHOG(hog_descriptor, num_hog_rows, num_hog_cols, hog_descriptor_vis);
cv::imshow("hog", hog_descriptor_vis);
}
}
}
if(hog_output_file.is_open())
{
output_HOG_frame(&hog_output_file, detection_success, hog_descriptor, num_hog_rows, num_hog_cols);
}
// Write the similarity normalised output
if(!output_similarity_align.empty())
{
if (sim_warped_img.channels() == 3 && grayscale)
{
cvtColor(sim_warped_img, sim_warped_img, CV_BGR2GRAY);
}
char name[100];
// output the frame number
std::sprintf(name, "frame_det_%06d.bmp", frame_count);
// Construct the output filename
boost::filesystem::path slash("/");
std::string preferredSlash = slash.make_preferred().string();
string out_file = output_similarity_align[f_n] + preferredSlash + string(name);
bool write_success = imwrite(out_file, sim_warped_img);
if (!write_success)
{
cout << "Could not output similarity aligned image image" << endl;
return 1;
}
}
// Visualising the tracker
visualise_tracking(captured_image, face_model, det_parameters, gazeDirection0, gazeDirection1, frame_count, fx, fy, cx, cy);
// Output the landmarks, pose, gaze, parameters and AUs
outputAllFeatures(&output_file, output_2D_landmarks, output_3D_landmarks, output_model_params, output_pose, output_AUs, output_gaze,
face_model, frame_count, time_stamp, detection_success, gazeDirection0, gazeDirection1, gazeAngle,
pose_estimate, fx, fy, cx, cy, face_analyser);
// output the tracked video
if(!tracked_videos_output.empty())
{
writerFace << captured_image;
}
if(video_input)
{
video_capture >> captured_image;
}
else
{
curr_img++;
if(curr_img < (int)input_image_files[f_n].size())
{
string curr_img_file = input_image_files[f_n][curr_img];
captured_image = cv::imread(curr_img_file, -1);
}
else
{
captured_image = cv::Mat();
}
}
// detect key presses
char character_press = cv::waitKey(1);
// restart the tracker
if(character_press == 'r')
{
face_model.Reset();
}
// quit the application
else if(character_press=='q')
{
return(0);
}
// Update the frame count
frame_count++;
if(total_frames != -1)
{
if((double)frame_count/(double)total_frames >= reported_completion / 10.0)
{
cout << reported_completion * 10 << "% ";
reported_completion = reported_completion + 1;
}
}
}
output_file.close();
if(output_files.size() > 0 && output_AUs)
{
cout << "Postprocessing the Action Unit predictions" << endl;
post_process_output_file(face_analyser, output_files[f_n], dynamic);
}
// Reset the models for the next video
face_analyser.Reset();
face_model.Reset();
frame_count = 0;
curr_img = -1;
if (total_frames != -1)
{
cout << endl;
}
// break out of the loop if done with all the files (or using a webcam)
if((video_input && f_n == input_files.size() -1) || (!video_input && f_n == input_image_files.size() - 1))
{
done = true;
}
}
return 0;
}
// Allows for post processing of the AU signal
void post_process_output_file(FaceAnalysis::FaceAnalyser& face_analyser, string output_file, bool dynamic)
{
vector<double> certainties;
vector<bool> successes;
vector<double> timestamps;
vector<std::pair<std::string, vector<double>>> predictions_reg;
vector<std::pair<std::string, vector<double>>> predictions_class;
// Construct the new values to overwrite the output file with
face_analyser.ExtractAllPredictionsOfflineReg(predictions_reg, certainties, successes, timestamps, dynamic);
face_analyser.ExtractAllPredictionsOfflineClass(predictions_class, certainties, successes, timestamps, dynamic);
int num_class = predictions_class.size();
int num_reg = predictions_reg.size();
// Extract the indices of writing out first
vector<string> au_reg_names = face_analyser.GetAURegNames();
std::sort(au_reg_names.begin(), au_reg_names.end());
vector<int> inds_reg;
// write out ar the correct index
for (string au_name : au_reg_names)
{
for (int i = 0; i < num_reg; ++i)
{
if (au_name.compare(predictions_reg[i].first) == 0)
{
inds_reg.push_back(i);
break;
}
}
}
vector<string> au_class_names = face_analyser.GetAUClassNames();
std::sort(au_class_names.begin(), au_class_names.end());
vector<int> inds_class;
// write out ar the correct index
for (string au_name : au_class_names)
{
for (int i = 0; i < num_class; ++i)
{
if (au_name.compare(predictions_class[i].first) == 0)
{
inds_class.push_back(i);
break;
}
}
}
// Read all of the output file in
vector<string> output_file_contents;
std::ifstream infile(output_file);
string line;
while (std::getline(infile, line))
output_file_contents.push_back(line);
infile.close();
// Read the header and find all _r and _c parts in a file and use their indices
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[0], boost::is_any_of(","));
int begin_ind = -1;
for (size_t i = 0; i < tokens.size(); ++i)
{
if (tokens[i].find("AU") != string::npos && begin_ind == -1)
{
begin_ind = i;
break;
}
}
int end_ind = begin_ind + num_class + num_reg;
// Now overwrite the whole file
std::ofstream outfile(output_file, ios_base::out);
// Write the header
outfile << std::setprecision(4);
outfile << output_file_contents[0].c_str() << endl;
// Write the contents
for (int i = 1; i < (int)output_file_contents.size(); ++i)
{
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[i], boost::is_any_of(","));
boost::trim(tokens[0]);
outfile << tokens[0];
for (int t = 1; t < (int)tokens.size(); ++t)
{
if (t >= begin_ind && t < end_ind)
{
if(t - begin_ind < num_reg)
{
outfile << ", " << predictions_reg[inds_reg[t - begin_ind]].second[i - 1];
}
else
{
outfile << ", " << predictions_class[inds_class[t - begin_ind - num_reg]].second[i - 1];
}
}
else
{
boost::trim(tokens[t]);
outfile << ", " << tokens[t];
}
}
outfile << endl;
}
}
void prepareOutputFile(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks,
bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
int num_landmarks, int num_model_modes, vector<string> au_names_class, vector<string> au_names_reg)
{
*output_file << "frame, timestamp, confidence, success";
if (output_gaze)
{
*output_file << ", gaze_0_x, gaze_0_y, gaze_0_z, gaze_1_x, gaze_1_y, gaze_1_z, gaze_angle_x, gaze_angle_y";
}
if (output_pose)
{
*output_file << ", pose_Tx, pose_Ty, pose_Tz, pose_Rx, pose_Ry, pose_Rz";
}
if (output_2D_landmarks)
{
for (int i = 0; i < num_landmarks; ++i)
{
*output_file << ", x_" << i;
}
for (int i = 0; i < num_landmarks; ++i)
{
*output_file << ", y_" << i;
}
}
if (output_3D_landmarks)
{
for (int i = 0; i < num_landmarks; ++i)
{
*output_file << ", X_" << i;
}
for (int i = 0; i < num_landmarks; ++i)
{
*output_file << ", Y_" << i;
}
for (int i = 0; i < num_landmarks; ++i)
{
*output_file << ", Z_" << i;
}
}
// Outputting model parameters (rigid and non-rigid), the first parameters are the 6 rigid shape parameters, they are followed by the non rigid shape parameters
if (output_model_params)
{
*output_file << ", p_scale, p_rx, p_ry, p_rz, p_tx, p_ty";
for (int i = 0; i < num_model_modes; ++i)
{
*output_file << ", p_" << i;
}
}
if (output_AUs)
{
std::sort(au_names_reg.begin(), au_names_reg.end());
for (string reg_name : au_names_reg)
{
*output_file << ", " << reg_name << "_r";
}
std::sort(au_names_class.begin(), au_names_class.end());
for (string class_name : au_names_class)
{
*output_file << ", " << class_name << "_c";
}
}
*output_file << endl;
}
// Output all of the information into one file in one go (quite a few parameters, but simplifies the flow)
void outputAllFeatures(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks,
bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
const LandmarkDetector::CLNF& face_model, int frame_count, double time_stamp, bool detection_success,
cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, cv::Vec2d gaze_angle, const cv::Vec6d& pose_estimate, double fx, double fy, double cx, double cy,
const FaceAnalysis::FaceAnalyser& face_analyser)
{
double confidence = 0.5 * (1 - face_model.detection_certainty);
*output_file << std::setprecision(9);
*output_file << frame_count + 1 << ", " << time_stamp << ", ";
*output_file << std::setprecision(2);
*output_file << confidence << ", " << detection_success;
*output_file << std::setprecision(5);
// Output the estimated gaze
if (output_gaze)
{
*output_file << ", " << gazeDirection0.x << ", " << gazeDirection0.y << ", " << gazeDirection0.z
<< ", " << gazeDirection1.x << ", " << gazeDirection1.y << ", " << gazeDirection1.z
<< ", " << gaze_angle[0] << ", " << gaze_angle[1];
}
*output_file << std::setprecision(4);
// Output the estimated head pose
if (output_pose)
{
if(face_model.tracking_initialised)
{
*output_file << ", " << pose_estimate[0] << ", " << pose_estimate[1] << ", " << pose_estimate[2]
<< ", " << pose_estimate[3] << ", " << pose_estimate[4] << ", " << pose_estimate[5];
}
else
{
*output_file << ", 0, 0, 0, 0, 0, 0";
}
}
*output_file << std::setprecision(4);
// Output the detected 2D facial landmarks
if (output_2D_landmarks)
{
for (int i = 0; i < face_model.pdm.NumberOfPoints() * 2; ++i)
{
if(face_model.tracking_initialised)
{
*output_file << ", " << face_model.detected_landmarks.at<double>(i);
}
else
{
*output_file << ", 0";
}
}
}
// Output the detected 3D facial landmarks
if (output_3D_landmarks)
{
cv::Mat_<double> shape_3D = face_model.GetShape(fx, fy, cx, cy);
for (int i = 0; i < face_model.pdm.NumberOfPoints() * 3; ++i)
{
if (face_model.tracking_initialised)
{
*output_file << ", " << shape_3D.at<double>(i);
}
else
{
*output_file << ", 0";
}
}
}
if (output_model_params)
{
for (int i = 0; i < 6; ++i)
{
if (face_model.tracking_initialised)
{
*output_file << ", " << face_model.params_global[i];
}
else
{
*output_file << ", 0";
}
}
for (int i = 0; i < face_model.pdm.NumberOfModes(); ++i)
{
if(face_model.tracking_initialised)
{
*output_file << ", " << face_model.params_local.at<double>(i, 0);
}
else
{
*output_file << ", 0";
}
}
}
if (output_AUs)
{
auto aus_reg = face_analyser.GetCurrentAUsReg();
vector<string> au_reg_names = face_analyser.GetAURegNames();
std::sort(au_reg_names.begin(), au_reg_names.end());
// write out ar the correct index
for (string au_name : au_reg_names)
{
for (auto au_reg : aus_reg)
{
if (au_name.compare(au_reg.first) == 0)
{
*output_file << ", " << au_reg.second;
break;
}
}
}
if (aus_reg.size() == 0)
{
for (size_t p = 0; p < face_analyser.GetAURegNames().size(); ++p)
{
*output_file << ", 0";
}
}
auto aus_class = face_analyser.GetCurrentAUsClass();
vector<string> au_class_names = face_analyser.GetAUClassNames();
std::sort(au_class_names.begin(), au_class_names.end());
// write out ar the correct index
for (string au_name : au_class_names)
{
for (auto au_class : aus_class)
{
if (au_name.compare(au_class.first) == 0)
{
*output_file << ", " << au_class.second;
break;
}
}
}
if (aus_class.size() == 0)
{
for (size_t p = 0; p < face_analyser.GetAUClassNames().size(); ++p)
{
*output_file << ", 0";
}
}
}
*output_file << endl;
}
void get_output_feature_params(vector<string> &output_similarity_aligned, vector<string> &output_hog_aligned_files, double &similarity_scale,
int &similarity_size, bool &grayscale, bool& verbose, bool& dynamic,
bool &output_2D_landmarks, bool &output_3D_landmarks, bool &output_model_params, bool &output_pose, bool &output_AUs, bool &output_gaze,
vector<string> &arguments)
{
output_similarity_aligned.clear();
output_hog_aligned_files.clear();
bool* valid = new bool[arguments.size()];
for (size_t i = 0; i < arguments.size(); ++i)
{
valid[i] = true;
}
string output_root = "";
// By default the model is dynamic
dynamic = true;
string separator = string(1, boost::filesystem::path::preferred_separator);
// First check if there is a root argument (so that videos and outputs could be defined more easilly)
for (size_t i = 0; i < arguments.size(); ++i)
{
if (arguments[i].compare("-root") == 0)
{
output_root = arguments[i + 1] + separator;
i++;
}
if (arguments[i].compare("-outroot") == 0)
{
output_root = arguments[i + 1] + separator;
i++;
}
}
for (size_t i = 0; i < arguments.size(); ++i)
{
if (arguments[i].compare("-simalign") == 0)
{
output_similarity_aligned.push_back(output_root + arguments[i + 1]);
create_directory(output_root + arguments[i + 1]);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-hogalign") == 0)
{
output_hog_aligned_files.push_back(output_root + arguments[i + 1]);
create_directory_from_file(output_root + arguments[i + 1]);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-verbose") == 0)
{
verbose = true;
}
else if (arguments[i].compare("-au_static") == 0)
{
dynamic = false;
}
else if (arguments[i].compare("-g") == 0)
{
grayscale = true;
valid[i] = false;
}
else if (arguments[i].compare("-simscale") == 0)
{
similarity_scale = stod(arguments[i + 1]);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-simsize") == 0)
{
similarity_size = stoi(arguments[i + 1]);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-no2Dfp") == 0)
{
output_2D_landmarks = false;
valid[i] = false;
}
else if (arguments[i].compare("-no3Dfp") == 0)
{
output_3D_landmarks = false;
valid[i] = false;
}
else if (arguments[i].compare("-noMparams") == 0)
{
output_model_params = false;
valid[i] = false;
}
else if (arguments[i].compare("-noPose") == 0)
{
output_pose = false;
valid[i] = false;
}
else if (arguments[i].compare("-noAUs") == 0)
{
output_AUs = false;
valid[i] = false;
}
else if (arguments[i].compare("-noGaze") == 0)
{
output_gaze = false;
valid[i] = false;
}
}
for (int i = arguments.size() - 1; i >= 0; --i)
{
if (!valid[i])
{
arguments.erase(arguments.begin() + i);
}
}
}
// Can process images via directories creating a separate output file per directory
void get_image_input_output_params_feats(vector<vector<string> > &input_image_files, bool& as_video, vector<string> &arguments)
{
bool* valid = new bool[arguments.size()];
for (size_t i = 0; i < arguments.size(); ++i)
{
valid[i] = true;
if (arguments[i].compare("-fdir") == 0)
{
// parse the -fdir directory by reading in all of the .png and .jpg files in it
path image_directory(arguments[i + 1]);
try
{
// does the file exist and is it a directory
if (exists(image_directory) && is_directory(image_directory))
{
vector<path> file_in_directory;
copy(directory_iterator(image_directory), directory_iterator(), back_inserter(file_in_directory));
// Sort the images in the directory first
sort(file_in_directory.begin(), file_in_directory.end());
vector<string> curr_dir_files;
for (vector<path>::const_iterator file_iterator(file_in_directory.begin()); file_iterator != file_in_directory.end(); ++file_iterator)
{
// Possible image extension .jpg and .png
if (file_iterator->extension().string().compare(".jpg") == 0 || file_iterator->extension().string().compare(".png") == 0)
{
curr_dir_files.push_back(file_iterator->string());
}
}
input_image_files.push_back(curr_dir_files);
}
}
catch (const filesystem_error& ex)
{
cout << ex.what() << '\n';
}
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-asvid") == 0)
{
as_video = true;
}
}
// Clear up the argument list
for (int i = arguments.size() - 1; i >= 0; --i)
{
if (!valid[i])
{
arguments.erase(arguments.begin() + i);
}
}
}
void output_HOG_frame(std::ofstream* hog_file, bool good_frame, const cv::Mat_<double>& hog_descriptor, int num_rows, int num_cols)
{
// Using FHOGs, hence 31 channels
int num_channels = 31;
hog_file->write((char*)(&num_cols), 4);
hog_file->write((char*)(&num_rows), 4);
hog_file->write((char*)(&num_channels), 4);
// Not the best way to store a bool, but will be much easier to read it
float good_frame_float;
if (good_frame)
good_frame_float = 1;
else
good_frame_float = -1;
hog_file->write((char*)(&good_frame_float), 4);
cv::MatConstIterator_<double> descriptor_it = hog_descriptor.begin();
for (int y = 0; y < num_cols; ++y)
{
for (int x = 0; x < num_rows; ++x)
{
for (unsigned int o = 0; o < 31; ++o)
{
float hog_data = (float)(*descriptor_it++);
hog_file->write((char*)&hog_data, 4);
}
}
}
}