sustaining_gazes/lib/3rdParty/boost/boost/concept_check.hpp
2016-04-28 15:40:36 -04:00

1082 lines
31 KiB
C++

//
// (C) Copyright Jeremy Siek 2000.
// Copyright 2002 The Trustees of Indiana University.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Revision History:
// 05 May 2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek)
// 02 April 2001: Removed limits header altogether. (Jeremy Siek)
// 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock)
//
// See http://www.boost.org/libs/concept_check for documentation.
#ifndef BOOST_CONCEPT_CHECKS_HPP
# define BOOST_CONCEPT_CHECKS_HPP
# include <boost/concept/assert.hpp>
# include <iterator>
# include <boost/type_traits/conversion_traits.hpp>
# include <utility>
# include <boost/type_traits/is_same.hpp>
# include <boost/type_traits/is_void.hpp>
# include <boost/mpl/assert.hpp>
# include <boost/mpl/bool.hpp>
# include <boost/detail/workaround.hpp>
# include <boost/concept/usage.hpp>
# include <boost/concept/detail/concept_def.hpp>
#if (defined _MSC_VER)
# pragma warning( push )
# pragma warning( disable : 4510 ) // default constructor could not be generated
# pragma warning( disable : 4610 ) // object 'class' can never be instantiated - user-defined constructor required
#endif
namespace boost
{
//
// Backward compatibility
//
template <class Model>
inline void function_requires(Model* = 0)
{
BOOST_CONCEPT_ASSERT((Model));
}
template <class T> inline void ignore_unused_variable_warning(T const&) {}
# define BOOST_CLASS_REQUIRE(type_var, ns, concept) \
BOOST_CONCEPT_ASSERT((ns::concept<type_var>))
# define BOOST_CLASS_REQUIRE2(type_var1, type_var2, ns, concept) \
BOOST_CONCEPT_ASSERT((ns::concept<type_var1,type_var2>))
# define BOOST_CLASS_REQUIRE3(tv1, tv2, tv3, ns, concept) \
BOOST_CONCEPT_ASSERT((ns::concept<tv1,tv2,tv3>))
# define BOOST_CLASS_REQUIRE4(tv1, tv2, tv3, tv4, ns, concept) \
BOOST_CONCEPT_ASSERT((ns::concept<tv1,tv2,tv3,tv4>))
//
// Begin concept definitions
//
BOOST_concept(Integer, (T))
{
BOOST_CONCEPT_USAGE(Integer)
{
x.error_type_must_be_an_integer_type();
}
private:
T x;
};
template <> struct Integer<char> {};
template <> struct Integer<signed char> {};
template <> struct Integer<unsigned char> {};
template <> struct Integer<short> {};
template <> struct Integer<unsigned short> {};
template <> struct Integer<int> {};
template <> struct Integer<unsigned int> {};
template <> struct Integer<long> {};
template <> struct Integer<unsigned long> {};
# if defined(BOOST_HAS_LONG_LONG)
template <> struct Integer< ::boost::long_long_type> {};
template <> struct Integer< ::boost::ulong_long_type> {};
# elif defined(BOOST_HAS_MS_INT64)
template <> struct Integer<__int64> {};
template <> struct Integer<unsigned __int64> {};
# endif
BOOST_concept(SignedInteger,(T)) {
BOOST_CONCEPT_USAGE(SignedInteger) {
x.error_type_must_be_a_signed_integer_type();
}
private:
T x;
};
template <> struct SignedInteger<signed char> { };
template <> struct SignedInteger<short> {};
template <> struct SignedInteger<int> {};
template <> struct SignedInteger<long> {};
# if defined(BOOST_HAS_LONG_LONG)
template <> struct SignedInteger< ::boost::long_long_type> {};
# elif defined(BOOST_HAS_MS_INT64)
template <> struct SignedInteger<__int64> {};
# endif
BOOST_concept(UnsignedInteger,(T)) {
BOOST_CONCEPT_USAGE(UnsignedInteger) {
x.error_type_must_be_an_unsigned_integer_type();
}
private:
T x;
};
template <> struct UnsignedInteger<unsigned char> {};
template <> struct UnsignedInteger<unsigned short> {};
template <> struct UnsignedInteger<unsigned int> {};
template <> struct UnsignedInteger<unsigned long> {};
# if defined(BOOST_HAS_LONG_LONG)
template <> struct UnsignedInteger< ::boost::ulong_long_type> {};
# elif defined(BOOST_HAS_MS_INT64)
template <> struct UnsignedInteger<unsigned __int64> {};
# endif
//===========================================================================
// Basic Concepts
BOOST_concept(DefaultConstructible,(TT))
{
BOOST_CONCEPT_USAGE(DefaultConstructible) {
TT a; // require default constructor
ignore_unused_variable_warning(a);
}
};
BOOST_concept(Assignable,(TT))
{
BOOST_CONCEPT_USAGE(Assignable) {
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = b; // require assignment operator
#endif
const_constraints(b);
}
private:
void const_constraints(const TT& x) {
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = x; // const required for argument to assignment
#else
ignore_unused_variable_warning(x);
#endif
}
private:
TT a;
TT b;
};
BOOST_concept(CopyConstructible,(TT))
{
BOOST_CONCEPT_USAGE(CopyConstructible) {
TT a(b); // require copy constructor
TT* ptr = &a; // require address of operator
const_constraints(a);
ignore_unused_variable_warning(ptr);
}
private:
void const_constraints(const TT& a) {
TT c(a); // require const copy constructor
const TT* ptr = &a; // require const address of operator
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(ptr);
}
TT b;
};
// The SGI STL version of Assignable requires copy constructor and operator=
BOOST_concept(SGIAssignable,(TT))
{
BOOST_CONCEPT_USAGE(SGIAssignable) {
TT c(a);
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = b; // require assignment operator
#endif
const_constraints(b);
ignore_unused_variable_warning(c);
}
private:
void const_constraints(const TT& x) {
TT c(x);
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = x; // const required for argument to assignment
#endif
ignore_unused_variable_warning(c);
}
TT a;
TT b;
};
BOOST_concept(Convertible,(X)(Y))
{
BOOST_CONCEPT_USAGE(Convertible) {
Y y = x;
ignore_unused_variable_warning(y);
}
private:
X x;
};
// The C++ standard requirements for many concepts talk about return
// types that must be "convertible to bool". The problem with this
// requirement is that it leaves the door open for evil proxies that
// define things like operator|| with strange return types. Two
// possible solutions are:
// 1) require the return type to be exactly bool
// 2) stay with convertible to bool, and also
// specify stuff about all the logical operators.
// For now we just test for convertible to bool.
template <class TT>
void require_boolean_expr(const TT& t) {
bool x = t;
ignore_unused_variable_warning(x);
}
BOOST_concept(EqualityComparable,(TT))
{
BOOST_CONCEPT_USAGE(EqualityComparable) {
require_boolean_expr(a == b);
require_boolean_expr(a != b);
}
private:
TT a, b;
};
BOOST_concept(LessThanComparable,(TT))
{
BOOST_CONCEPT_USAGE(LessThanComparable) {
require_boolean_expr(a < b);
}
private:
TT a, b;
};
// This is equivalent to SGI STL's LessThanComparable.
BOOST_concept(Comparable,(TT))
{
BOOST_CONCEPT_USAGE(Comparable) {
require_boolean_expr(a < b);
require_boolean_expr(a > b);
require_boolean_expr(a <= b);
require_boolean_expr(a >= b);
}
private:
TT a, b;
};
#define BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(OP,NAME) \
BOOST_concept(NAME, (First)(Second)) \
{ \
BOOST_CONCEPT_USAGE(NAME) { (void)constraints_(); } \
private: \
bool constraints_() { return a OP b; } \
First a; \
Second b; \
}
#define BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(OP,NAME) \
BOOST_concept(NAME, (Ret)(First)(Second)) \
{ \
BOOST_CONCEPT_USAGE(NAME) { (void)constraints_(); } \
private: \
Ret constraints_() { return a OP b; } \
First a; \
Second b; \
}
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(==, EqualOp);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(!=, NotEqualOp);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<, LessThanOp);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<=, LessEqualOp);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>, GreaterThanOp);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>=, GreaterEqualOp);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(+, PlusOp);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(*, TimesOp);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(/, DivideOp);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(-, SubtractOp);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(%, ModOp);
//===========================================================================
// Function Object Concepts
BOOST_concept(Generator,(Func)(Return))
{
BOOST_CONCEPT_USAGE(Generator) { test(is_void<Return>()); }
private:
void test(boost::mpl::false_)
{
// Do we really want a reference here?
const Return& r = f();
ignore_unused_variable_warning(r);
}
void test(boost::mpl::true_)
{
f();
}
Func f;
};
BOOST_concept(UnaryFunction,(Func)(Return)(Arg))
{
BOOST_CONCEPT_USAGE(UnaryFunction) { test(is_void<Return>()); }
private:
void test(boost::mpl::false_)
{
f(arg); // "priming the pump" this way keeps msvc6 happy (ICE)
Return r = f(arg);
ignore_unused_variable_warning(r);
}
void test(boost::mpl::true_)
{
f(arg);
}
#if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \
&& BOOST_WORKAROUND(__GNUC__, > 3)))
// Declare a dummy construktor to make gcc happy.
// It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type.
// (warning: non-static reference "const double& boost::UnaryFunction<YourClassHere>::arg"
// in class without a constructor [-Wuninitialized])
UnaryFunction();
#endif
Func f;
Arg arg;
};
BOOST_concept(BinaryFunction,(Func)(Return)(First)(Second))
{
BOOST_CONCEPT_USAGE(BinaryFunction) { test(is_void<Return>()); }
private:
void test(boost::mpl::false_)
{
f(first,second);
Return r = f(first, second); // require operator()
(void)r;
}
void test(boost::mpl::true_)
{
f(first,second);
}
#if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \
&& BOOST_WORKAROUND(__GNUC__, > 3)))
// Declare a dummy constructor to make gcc happy.
// It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type.
// (warning: non-static reference "const double& boost::BinaryFunction<YourClassHere>::arg"
// in class without a constructor [-Wuninitialized])
BinaryFunction();
#endif
Func f;
First first;
Second second;
};
BOOST_concept(UnaryPredicate,(Func)(Arg))
{
BOOST_CONCEPT_USAGE(UnaryPredicate) {
require_boolean_expr(f(arg)); // require operator() returning bool
}
private:
#if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \
&& BOOST_WORKAROUND(__GNUC__, > 3)))
// Declare a dummy constructor to make gcc happy.
// It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type.
// (warning: non-static reference "const double& boost::UnaryPredicate<YourClassHere>::arg"
// in class without a constructor [-Wuninitialized])
UnaryPredicate();
#endif
Func f;
Arg arg;
};
BOOST_concept(BinaryPredicate,(Func)(First)(Second))
{
BOOST_CONCEPT_USAGE(BinaryPredicate) {
require_boolean_expr(f(a, b)); // require operator() returning bool
}
private:
#if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \
&& BOOST_WORKAROUND(__GNUC__, > 3)))
// Declare a dummy constructor to make gcc happy.
// It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type.
// (warning: non-static reference "const double& boost::BinaryPredicate<YourClassHere>::arg"
// in class without a constructor [-Wuninitialized])
BinaryPredicate();
#endif
Func f;
First a;
Second b;
};
// use this when functor is used inside a container class like std::set
BOOST_concept(Const_BinaryPredicate,(Func)(First)(Second))
: BinaryPredicate<Func, First, Second>
{
BOOST_CONCEPT_USAGE(Const_BinaryPredicate) {
const_constraints(f);
}
private:
void const_constraints(const Func& fun) {
// operator() must be a const member function
require_boolean_expr(fun(a, b));
}
#if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \
&& BOOST_WORKAROUND(__GNUC__, > 3)))
// Declare a dummy constructor to make gcc happy.
// It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type.
// (warning: non-static reference "const double& boost::Const_BinaryPredicate<YourClassHere>::arg"
// in class without a constructor [-Wuninitialized])
Const_BinaryPredicate();
#endif
Func f;
First a;
Second b;
};
BOOST_concept(AdaptableGenerator,(Func)(Return))
: Generator<Func, typename Func::result_type>
{
typedef typename Func::result_type result_type;
BOOST_CONCEPT_USAGE(AdaptableGenerator)
{
BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>));
}
};
BOOST_concept(AdaptableUnaryFunction,(Func)(Return)(Arg))
: UnaryFunction<Func, typename Func::result_type, typename Func::argument_type>
{
typedef typename Func::argument_type argument_type;
typedef typename Func::result_type result_type;
~AdaptableUnaryFunction()
{
BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>));
BOOST_CONCEPT_ASSERT((Convertible<Arg, argument_type>));
}
};
BOOST_concept(AdaptableBinaryFunction,(Func)(Return)(First)(Second))
: BinaryFunction<
Func
, typename Func::result_type
, typename Func::first_argument_type
, typename Func::second_argument_type
>
{
typedef typename Func::first_argument_type first_argument_type;
typedef typename Func::second_argument_type second_argument_type;
typedef typename Func::result_type result_type;
~AdaptableBinaryFunction()
{
BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>));
BOOST_CONCEPT_ASSERT((Convertible<First, first_argument_type>));
BOOST_CONCEPT_ASSERT((Convertible<Second, second_argument_type>));
}
};
BOOST_concept(AdaptablePredicate,(Func)(Arg))
: UnaryPredicate<Func, Arg>
, AdaptableUnaryFunction<Func, bool, Arg>
{
};
BOOST_concept(AdaptableBinaryPredicate,(Func)(First)(Second))
: BinaryPredicate<Func, First, Second>
, AdaptableBinaryFunction<Func, bool, First, Second>
{
};
//===========================================================================
// Iterator Concepts
BOOST_concept(InputIterator,(TT))
: Assignable<TT>
, EqualityComparable<TT>
{
typedef typename std::iterator_traits<TT>::value_type value_type;
typedef typename std::iterator_traits<TT>::difference_type difference_type;
typedef typename std::iterator_traits<TT>::reference reference;
typedef typename std::iterator_traits<TT>::pointer pointer;
typedef typename std::iterator_traits<TT>::iterator_category iterator_category;
BOOST_CONCEPT_USAGE(InputIterator)
{
BOOST_CONCEPT_ASSERT((SignedInteger<difference_type>));
BOOST_CONCEPT_ASSERT((Convertible<iterator_category, std::input_iterator_tag>));
TT j(i);
(void)*i; // require dereference operator
++j; // require preincrement operator
i++; // require postincrement operator
}
private:
TT i;
};
BOOST_concept(OutputIterator,(TT)(ValueT))
: Assignable<TT>
{
BOOST_CONCEPT_USAGE(OutputIterator) {
++i; // require preincrement operator
i++; // require postincrement operator
*i++ = t; // require postincrement and assignment
}
private:
TT i, j;
ValueT t;
};
BOOST_concept(ForwardIterator,(TT))
: InputIterator<TT>
{
BOOST_CONCEPT_USAGE(ForwardIterator)
{
BOOST_CONCEPT_ASSERT((Convertible<
BOOST_DEDUCED_TYPENAME ForwardIterator::iterator_category
, std::forward_iterator_tag
>));
typename InputIterator<TT>::reference r = *i;
ignore_unused_variable_warning(r);
}
private:
TT i;
};
BOOST_concept(Mutable_ForwardIterator,(TT))
: ForwardIterator<TT>
{
BOOST_CONCEPT_USAGE(Mutable_ForwardIterator) {
*i++ = *j; // require postincrement and assignment
}
private:
TT i, j;
};
BOOST_concept(BidirectionalIterator,(TT))
: ForwardIterator<TT>
{
BOOST_CONCEPT_USAGE(BidirectionalIterator)
{
BOOST_CONCEPT_ASSERT((Convertible<
BOOST_DEDUCED_TYPENAME BidirectionalIterator::iterator_category
, std::bidirectional_iterator_tag
>));
--i; // require predecrement operator
i--; // require postdecrement operator
}
private:
TT i;
};
BOOST_concept(Mutable_BidirectionalIterator,(TT))
: BidirectionalIterator<TT>
, Mutable_ForwardIterator<TT>
{
BOOST_CONCEPT_USAGE(Mutable_BidirectionalIterator)
{
*i-- = *j; // require postdecrement and assignment
}
private:
TT i, j;
};
BOOST_concept(RandomAccessIterator,(TT))
: BidirectionalIterator<TT>
, Comparable<TT>
{
BOOST_CONCEPT_USAGE(RandomAccessIterator)
{
BOOST_CONCEPT_ASSERT((Convertible<
BOOST_DEDUCED_TYPENAME BidirectionalIterator<TT>::iterator_category
, std::random_access_iterator_tag
>));
i += n; // require assignment addition operator
i = i + n; i = n + i; // require addition with difference type
i -= n; // require assignment subtraction operator
i = i - n; // require subtraction with difference type
n = i - j; // require difference operator
(void)i[n]; // require element access operator
}
private:
TT a, b;
TT i, j;
typename std::iterator_traits<TT>::difference_type n;
};
BOOST_concept(Mutable_RandomAccessIterator,(TT))
: RandomAccessIterator<TT>
, Mutable_BidirectionalIterator<TT>
{
BOOST_CONCEPT_USAGE(Mutable_RandomAccessIterator)
{
i[n] = *i; // require element access and assignment
}
private:
TT i;
typename std::iterator_traits<TT>::difference_type n;
};
//===========================================================================
// Container s
BOOST_concept(Container,(C))
: Assignable<C>
{
typedef typename C::value_type value_type;
typedef typename C::difference_type difference_type;
typedef typename C::size_type size_type;
typedef typename C::const_reference const_reference;
typedef typename C::const_pointer const_pointer;
typedef typename C::const_iterator const_iterator;
BOOST_CONCEPT_USAGE(Container)
{
BOOST_CONCEPT_ASSERT((InputIterator<const_iterator>));
const_constraints(c);
}
private:
void const_constraints(const C& cc) {
i = cc.begin();
i = cc.end();
n = cc.size();
n = cc.max_size();
b = cc.empty();
}
C c;
bool b;
const_iterator i;
size_type n;
};
BOOST_concept(Mutable_Container,(C))
: Container<C>
{
typedef typename C::reference reference;
typedef typename C::iterator iterator;
typedef typename C::pointer pointer;
BOOST_CONCEPT_USAGE(Mutable_Container)
{
BOOST_CONCEPT_ASSERT((
Assignable<typename Mutable_Container::value_type>));
BOOST_CONCEPT_ASSERT((InputIterator<iterator>));
i = c.begin();
i = c.end();
c.swap(c2);
}
private:
iterator i;
C c, c2;
};
BOOST_concept(ForwardContainer,(C))
: Container<C>
{
BOOST_CONCEPT_USAGE(ForwardContainer)
{
BOOST_CONCEPT_ASSERT((
ForwardIterator<
typename ForwardContainer::const_iterator
>));
}
};
BOOST_concept(Mutable_ForwardContainer,(C))
: ForwardContainer<C>
, Mutable_Container<C>
{
BOOST_CONCEPT_USAGE(Mutable_ForwardContainer)
{
BOOST_CONCEPT_ASSERT((
Mutable_ForwardIterator<
typename Mutable_ForwardContainer::iterator
>));
}
};
BOOST_concept(ReversibleContainer,(C))
: ForwardContainer<C>
{
typedef typename
C::const_reverse_iterator
const_reverse_iterator;
BOOST_CONCEPT_USAGE(ReversibleContainer)
{
BOOST_CONCEPT_ASSERT((
BidirectionalIterator<
typename ReversibleContainer::const_iterator>));
BOOST_CONCEPT_ASSERT((BidirectionalIterator<const_reverse_iterator>));
const_constraints(c);
}
private:
void const_constraints(const C& cc)
{
const_reverse_iterator i = cc.rbegin();
i = cc.rend();
}
C c;
};
BOOST_concept(Mutable_ReversibleContainer,(C))
: Mutable_ForwardContainer<C>
, ReversibleContainer<C>
{
typedef typename C::reverse_iterator reverse_iterator;
BOOST_CONCEPT_USAGE(Mutable_ReversibleContainer)
{
typedef typename Mutable_ForwardContainer<C>::iterator iterator;
BOOST_CONCEPT_ASSERT((Mutable_BidirectionalIterator<iterator>));
BOOST_CONCEPT_ASSERT((Mutable_BidirectionalIterator<reverse_iterator>));
reverse_iterator i = c.rbegin();
i = c.rend();
}
private:
C c;
};
BOOST_concept(RandomAccessContainer,(C))
: ReversibleContainer<C>
{
typedef typename C::size_type size_type;
typedef typename C::const_reference const_reference;
BOOST_CONCEPT_USAGE(RandomAccessContainer)
{
BOOST_CONCEPT_ASSERT((
RandomAccessIterator<
typename RandomAccessContainer::const_iterator
>));
const_constraints(c);
}
private:
void const_constraints(const C& cc)
{
const_reference r = cc[n];
ignore_unused_variable_warning(r);
}
C c;
size_type n;
};
BOOST_concept(Mutable_RandomAccessContainer,(C))
: Mutable_ReversibleContainer<C>
, RandomAccessContainer<C>
{
private:
typedef Mutable_RandomAccessContainer self;
public:
BOOST_CONCEPT_USAGE(Mutable_RandomAccessContainer)
{
BOOST_CONCEPT_ASSERT((Mutable_RandomAccessIterator<typename self::iterator>));
BOOST_CONCEPT_ASSERT((Mutable_RandomAccessIterator<typename self::reverse_iterator>));
typename self::reference r = c[i];
ignore_unused_variable_warning(r);
}
private:
typename Mutable_ReversibleContainer<C>::size_type i;
C c;
};
// A Sequence is inherently mutable
BOOST_concept(Sequence,(S))
: Mutable_ForwardContainer<S>
// Matt Austern's book puts DefaultConstructible here, the C++
// standard places it in Container --JGS
// ... so why aren't we following the standard? --DWA
, DefaultConstructible<S>
{
BOOST_CONCEPT_USAGE(Sequence)
{
S
c(n, t),
c2(first, last);
c.insert(p, t);
c.insert(p, n, t);
c.insert(p, first, last);
c.erase(p);
c.erase(p, q);
typename Sequence::reference r = c.front();
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(c2);
ignore_unused_variable_warning(r);
const_constraints(c);
}
private:
void const_constraints(const S& c) {
typename Sequence::const_reference r = c.front();
ignore_unused_variable_warning(r);
}
typename S::value_type t;
typename S::size_type n;
typename S::value_type* first, *last;
typename S::iterator p, q;
};
BOOST_concept(FrontInsertionSequence,(S))
: Sequence<S>
{
BOOST_CONCEPT_USAGE(FrontInsertionSequence)
{
c.push_front(t);
c.pop_front();
}
private:
S c;
typename S::value_type t;
};
BOOST_concept(BackInsertionSequence,(S))
: Sequence<S>
{
BOOST_CONCEPT_USAGE(BackInsertionSequence)
{
c.push_back(t);
c.pop_back();
typename BackInsertionSequence::reference r = c.back();
ignore_unused_variable_warning(r);
const_constraints(c);
}
private:
void const_constraints(const S& cc) {
typename BackInsertionSequence::const_reference
r = cc.back();
ignore_unused_variable_warning(r);
}
S c;
typename S::value_type t;
};
BOOST_concept(AssociativeContainer,(C))
: ForwardContainer<C>
, DefaultConstructible<C>
{
typedef typename C::key_type key_type;
typedef typename C::key_compare key_compare;
typedef typename C::value_compare value_compare;
typedef typename C::iterator iterator;
BOOST_CONCEPT_USAGE(AssociativeContainer)
{
i = c.find(k);
r = c.equal_range(k);
c.erase(k);
c.erase(i);
c.erase(r.first, r.second);
const_constraints(c);
BOOST_CONCEPT_ASSERT((BinaryPredicate<key_compare,key_type,key_type>));
typedef typename AssociativeContainer::value_type value_type_;
BOOST_CONCEPT_ASSERT((BinaryPredicate<value_compare,value_type_,value_type_>));
}
// Redundant with the base concept, but it helps below.
typedef typename C::const_iterator const_iterator;
private:
void const_constraints(const C& cc)
{
ci = cc.find(k);
n = cc.count(k);
cr = cc.equal_range(k);
}
C c;
iterator i;
std::pair<iterator,iterator> r;
const_iterator ci;
std::pair<const_iterator,const_iterator> cr;
typename C::key_type k;
typename C::size_type n;
};
BOOST_concept(UniqueAssociativeContainer,(C))
: AssociativeContainer<C>
{
BOOST_CONCEPT_USAGE(UniqueAssociativeContainer)
{
C c(first, last);
pos_flag = c.insert(t);
c.insert(first, last);
ignore_unused_variable_warning(c);
}
private:
std::pair<typename C::iterator, bool> pos_flag;
typename C::value_type t;
typename C::value_type* first, *last;
};
BOOST_concept(MultipleAssociativeContainer,(C))
: AssociativeContainer<C>
{
BOOST_CONCEPT_USAGE(MultipleAssociativeContainer)
{
C c(first, last);
pos = c.insert(t);
c.insert(first, last);
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(pos);
}
private:
typename C::iterator pos;
typename C::value_type t;
typename C::value_type* first, *last;
};
BOOST_concept(SimpleAssociativeContainer,(C))
: AssociativeContainer<C>
{
BOOST_CONCEPT_USAGE(SimpleAssociativeContainer)
{
typedef typename C::key_type key_type;
typedef typename C::value_type value_type;
BOOST_MPL_ASSERT((boost::is_same<key_type,value_type>));
}
};
BOOST_concept(PairAssociativeContainer,(C))
: AssociativeContainer<C>
{
BOOST_CONCEPT_USAGE(PairAssociativeContainer)
{
typedef typename C::key_type key_type;
typedef typename C::value_type value_type;
typedef typename C::mapped_type mapped_type;
typedef std::pair<const key_type, mapped_type> required_value_type;
BOOST_MPL_ASSERT((boost::is_same<value_type,required_value_type>));
}
};
BOOST_concept(SortedAssociativeContainer,(C))
: AssociativeContainer<C>
, ReversibleContainer<C>
{
BOOST_CONCEPT_USAGE(SortedAssociativeContainer)
{
C
c(kc),
c2(first, last),
c3(first, last, kc);
p = c.upper_bound(k);
p = c.lower_bound(k);
r = c.equal_range(k);
c.insert(p, t);
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(c2);
ignore_unused_variable_warning(c3);
const_constraints(c);
}
void const_constraints(const C& c)
{
kc = c.key_comp();
vc = c.value_comp();
cp = c.upper_bound(k);
cp = c.lower_bound(k);
cr = c.equal_range(k);
}
private:
typename C::key_compare kc;
typename C::value_compare vc;
typename C::value_type t;
typename C::key_type k;
typedef typename C::iterator iterator;
typedef typename C::const_iterator const_iterator;
typedef SortedAssociativeContainer self;
iterator p;
const_iterator cp;
std::pair<typename self::iterator,typename self::iterator> r;
std::pair<typename self::const_iterator,typename self::const_iterator> cr;
typename C::value_type* first, *last;
};
// HashedAssociativeContainer
BOOST_concept(Collection,(C))
{
BOOST_CONCEPT_USAGE(Collection)
{
boost::function_requires<boost::InputIteratorConcept<iterator> >();
boost::function_requires<boost::InputIteratorConcept<const_iterator> >();
boost::function_requires<boost::CopyConstructibleConcept<value_type> >();
const_constraints(c);
i = c.begin();
i = c.end();
c.swap(c);
}
void const_constraints(const C& cc) {
ci = cc.begin();
ci = cc.end();
n = cc.size();
b = cc.empty();
}
private:
typedef typename C::value_type value_type;
typedef typename C::iterator iterator;
typedef typename C::const_iterator const_iterator;
typedef typename C::reference reference;
typedef typename C::const_reference const_reference;
// typedef typename C::pointer pointer;
typedef typename C::difference_type difference_type;
typedef typename C::size_type size_type;
C c;
bool b;
iterator i;
const_iterator ci;
size_type n;
};
} // namespace boost
#if (defined _MSC_VER)
# pragma warning( pop )
#endif
# include <boost/concept/detail/concept_undef.hpp>
#endif // BOOST_CONCEPT_CHECKS_HPP