279 lines
8.7 KiB
C++
279 lines
8.7 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
||
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
||
// all rights reserved.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
||
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
||
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
||
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
// POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
||
// of the Software may be covered by so-called “open source” software licenses (“Open Source
|
||
// Components”), which means any software licenses approved as open source licenses by the
|
||
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
||
// license that, as a condition of distribution of the software licensed under such license,
|
||
// requires that the distributor make the software available in source code format. Licensor shall
|
||
// provide a list of Open Source Components for a particular version of the Software upon
|
||
// Licensee’s request. Licensee will comply with the applicable terms of such licenses and to
|
||
// the extent required by the licenses covering Open Source Components, the terms of such
|
||
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
||
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
||
// License Agreement with respect to such Open Source Component, such restrictions will not
|
||
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
||
// Open Source Components require Licensor to make an offer to provide source code or
|
||
// related information in connection with the Software, such offer is hereby made. Any request
|
||
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
||
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
||
// delivery of the Software.
|
||
|
||
// * Any publications arising from the use of this software, including but
|
||
// not limited to academic journal and conference publications, technical
|
||
// reports and manuals, must cite at least one of the following works:
|
||
//
|
||
// OpenFace: an open source facial behavior analysis toolkit
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
||
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
||
//
|
||
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
||
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
||
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
||
//
|
||
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
||
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
||
// in Facial Expression Recognition and Analysis Challenge,
|
||
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
||
//
|
||
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
||
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
||
//
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
|
||
#include "stdafx.h"
|
||
|
||
#include "LandmarkDetectorParameters.h"
|
||
|
||
// Boost includes
|
||
#include <filesystem.hpp>
|
||
#include <filesystem/fstream.hpp>
|
||
|
||
// System includes
|
||
#include <sstream>
|
||
#include <iostream>
|
||
|
||
using namespace std;
|
||
|
||
using namespace LandmarkDetector;
|
||
|
||
FaceModelParameters::FaceModelParameters()
|
||
{
|
||
// initialise the default values
|
||
init();
|
||
}
|
||
|
||
FaceModelParameters::FaceModelParameters(vector<string> &arguments)
|
||
{
|
||
// initialise the default values
|
||
init();
|
||
|
||
// First element is reserved for the executable location (useful for finding relative model locs)
|
||
boost::filesystem::path root = boost::filesystem::path(arguments[0]).parent_path();
|
||
|
||
bool* valid = new bool[arguments.size()];
|
||
valid[0] = true;
|
||
|
||
for (size_t i = 1; i < arguments.size(); ++i)
|
||
{
|
||
valid[i] = true;
|
||
|
||
if (arguments[i].compare("-mloc") == 0)
|
||
{
|
||
string model_loc = arguments[i + 1];
|
||
model_location = model_loc;
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
|
||
}
|
||
if (arguments[i].compare("-sigma") == 0)
|
||
{
|
||
stringstream data(arguments[i + 1]);
|
||
data >> sigma;
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-w_reg") == 0)
|
||
{
|
||
stringstream data(arguments[i + 1]);
|
||
data >> weight_factor;
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-reg") == 0)
|
||
{
|
||
stringstream data(arguments[i + 1]);
|
||
data >> reg_factor;
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-multi_view") == 0)
|
||
{
|
||
|
||
stringstream data(arguments[i + 1]);
|
||
int m_view;
|
||
data >> m_view;
|
||
|
||
multi_view = (bool)(m_view != 0);
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-validate_detections") == 0)
|
||
{
|
||
stringstream data(arguments[i + 1]);
|
||
int v_det;
|
||
data >> v_det;
|
||
|
||
validate_detections = (bool)(v_det != 0);
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-n_iter") == 0)
|
||
{
|
||
stringstream data(arguments[i + 1]);
|
||
data >> num_optimisation_iteration;
|
||
|
||
valid[i] = false;
|
||
valid[i + 1] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-gaze") == 0)
|
||
{
|
||
track_gaze = true;
|
||
|
||
valid[i] = false;
|
||
i++;
|
||
}
|
||
else if (arguments[i].compare("-q") == 0)
|
||
{
|
||
|
||
quiet_mode = true;
|
||
|
||
valid[i] = false;
|
||
}
|
||
else if (arguments[i].compare("-wild") == 0)
|
||
{
|
||
// For in the wild fitting these parameters are suitable
|
||
window_sizes_init = vector<int>(4);
|
||
window_sizes_init[0] = 15; window_sizes_init[1] = 13; window_sizes_init[2] = 11; window_sizes_init[3] = 9;
|
||
|
||
sigma = 1.25;
|
||
reg_factor = 35;
|
||
weight_factor = 2.5;
|
||
num_optimisation_iteration = 10;
|
||
|
||
valid[i] = false;
|
||
|
||
// For in-the-wild images use an in-the wild detector
|
||
curr_face_detector = HOG_SVM_DETECTOR;
|
||
|
||
}
|
||
}
|
||
|
||
for (int i = (int)arguments.size() - 1; i >= 0; --i)
|
||
{
|
||
if (!valid[i])
|
||
{
|
||
arguments.erase(arguments.begin() + i);
|
||
}
|
||
}
|
||
|
||
// Make sure model_location is valid
|
||
if (!boost::filesystem::exists(boost::filesystem::path(model_location)))
|
||
{
|
||
model_location = (root / model_location).string();
|
||
if (!boost::filesystem::exists(boost::filesystem::path(model_location)))
|
||
{
|
||
std::cout << "Could not find the landmark detection model to load" << std::endl;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
void FaceModelParameters::init()
|
||
{
|
||
|
||
// number of iterations that will be performed at each scale
|
||
num_optimisation_iteration = 5;
|
||
|
||
// using an external face checker based on SVM
|
||
validate_detections = true;
|
||
|
||
// Using hierarchical refinement by default (can be turned off)
|
||
refine_hierarchical = true;
|
||
|
||
// Refining parameters by default
|
||
refine_parameters = true;
|
||
|
||
window_sizes_small = vector<int>(4);
|
||
window_sizes_init = vector<int>(4);
|
||
|
||
// For fast tracking
|
||
window_sizes_small[0] = 0;
|
||
window_sizes_small[1] = 9;
|
||
window_sizes_small[2] = 7;
|
||
window_sizes_small[3] = 5;
|
||
|
||
// Just for initialisation
|
||
window_sizes_init.at(0) = 11;
|
||
window_sizes_init.at(1) = 9;
|
||
window_sizes_init.at(2) = 7;
|
||
window_sizes_init.at(3) = 5;
|
||
|
||
face_template_scale = 0.3;
|
||
// Off by default (as it might lead to some slight inaccuracies in slowly moving faces)
|
||
use_face_template = false;
|
||
|
||
// For first frame use the initialisation
|
||
window_sizes_current = window_sizes_init;
|
||
|
||
model_location = "model/main_clnf_general.txt";
|
||
|
||
sigma = 1.5;
|
||
reg_factor = 25;
|
||
weight_factor = 0; // By default do not use NU-RLMS for videos as it does not work as well for them
|
||
|
||
validation_boundary = -0.45;
|
||
|
||
limit_pose = true;
|
||
multi_view = false;
|
||
|
||
reinit_video_every = 4;
|
||
|
||
// Face detection
|
||
#if OS_UNIX
|
||
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
|
||
#else
|
||
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
|
||
#endif
|
||
|
||
quiet_mode = false;
|
||
|
||
// By default use HOG SVM
|
||
curr_face_detector = HOG_SVM_DETECTOR;
|
||
|
||
// The gaze tracking has to be explicitly initialised
|
||
track_gaze = false;
|
||
}
|
||
|