sustaining_gazes/lib/local/LandmarkDetector/src/LandmarkDetectorParameters.cpp
Tadas Baltrusaitis c1ff40399e Bug fixes
2016-09-06 12:32:33 -04:00

279 lines
8.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "LandmarkDetectorParameters.h"
// Boost includes
#include <filesystem.hpp>
#include <filesystem/fstream.hpp>
// System includes
#include <sstream>
#include <iostream>
using namespace std;
using namespace LandmarkDetector;
FaceModelParameters::FaceModelParameters()
{
// initialise the default values
init();
}
FaceModelParameters::FaceModelParameters(vector<string> &arguments)
{
// initialise the default values
init();
// First element is reserved for the executable location (useful for finding relative model locs)
boost::filesystem::path root = boost::filesystem::path(arguments[0]).parent_path();
bool* valid = new bool[arguments.size()];
valid[0] = true;
for (size_t i = 1; i < arguments.size(); ++i)
{
valid[i] = true;
if (arguments[i].compare("-mloc") == 0)
{
string model_loc = arguments[i + 1];
model_location = model_loc;
valid[i] = false;
valid[i + 1] = false;
i++;
}
if (arguments[i].compare("-sigma") == 0)
{
stringstream data(arguments[i + 1]);
data >> sigma;
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-w_reg") == 0)
{
stringstream data(arguments[i + 1]);
data >> weight_factor;
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-reg") == 0)
{
stringstream data(arguments[i + 1]);
data >> reg_factor;
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-multi_view") == 0)
{
stringstream data(arguments[i + 1]);
int m_view;
data >> m_view;
multi_view = (bool)(m_view != 0);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-validate_detections") == 0)
{
stringstream data(arguments[i + 1]);
int v_det;
data >> v_det;
validate_detections = (bool)(v_det != 0);
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-n_iter") == 0)
{
stringstream data(arguments[i + 1]);
data >> num_optimisation_iteration;
valid[i] = false;
valid[i + 1] = false;
i++;
}
else if (arguments[i].compare("-gaze") == 0)
{
track_gaze = true;
valid[i] = false;
i++;
}
else if (arguments[i].compare("-q") == 0)
{
quiet_mode = true;
valid[i] = false;
}
else if (arguments[i].compare("-wild") == 0)
{
// For in the wild fitting these parameters are suitable
window_sizes_init = vector<int>(4);
window_sizes_init[0] = 15; window_sizes_init[1] = 13; window_sizes_init[2] = 11; window_sizes_init[3] = 9;
sigma = 1.25;
reg_factor = 35;
weight_factor = 2.5;
num_optimisation_iteration = 10;
valid[i] = false;
// For in-the-wild images use an in-the wild detector
curr_face_detector = HOG_SVM_DETECTOR;
}
}
for (int i = (int)arguments.size() - 1; i >= 0; --i)
{
if (!valid[i])
{
arguments.erase(arguments.begin() + i);
}
}
// Make sure model_location is valid
if (!boost::filesystem::exists(boost::filesystem::path(model_location)))
{
model_location = (root / model_location).string();
if (!boost::filesystem::exists(boost::filesystem::path(model_location)))
{
std::cout << "Could not find the landmark detection model to load" << std::endl;
}
}
}
void FaceModelParameters::init()
{
// number of iterations that will be performed at each scale
num_optimisation_iteration = 5;
// using an external face checker based on SVM
validate_detections = true;
// Using hierarchical refinement by default (can be turned off)
refine_hierarchical = true;
// Refining parameters by default
refine_parameters = true;
window_sizes_small = vector<int>(4);
window_sizes_init = vector<int>(4);
// For fast tracking
window_sizes_small[0] = 0;
window_sizes_small[1] = 9;
window_sizes_small[2] = 7;
window_sizes_small[3] = 5;
// Just for initialisation
window_sizes_init.at(0) = 11;
window_sizes_init.at(1) = 9;
window_sizes_init.at(2) = 7;
window_sizes_init.at(3) = 5;
face_template_scale = 0.3;
// Off by default (as it might lead to some slight inaccuracies in slowly moving faces)
use_face_template = false;
// For first frame use the initialisation
window_sizes_current = window_sizes_init;
model_location = "model/main_clnf_general.txt";
sigma = 1.5;
reg_factor = 25;
weight_factor = 0; // By default do not use NU-RLMS for videos as it does not work as well for them
validation_boundary = -0.45;
limit_pose = true;
multi_view = false;
reinit_video_every = 4;
// Face detection
#if OS_UNIX
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
#else
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
#endif
quiet_mode = false;
// By default use HOG SVM
curr_face_detector = HOG_SVM_DETECTOR;
// The gaze tracking has to be explicitly initialised
track_gaze = false;
}