/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// // FaceLandmarkImg.cpp : Defines the entry point for the console application for detecting landmarks in images. #include "LandmarkCoreIncludes.h" // System includes #include // OpenCV includes #include #include #include // Boost includes #include #include #include #include #include #include #ifndef CONFIG_DIR #define CONFIG_DIR "~" #endif using namespace std; vector get_arguments(int argc, char **argv) { vector arguments; for(int i = 0; i < argc; ++i) { arguments.push_back(string(argv[i])); } return arguments; } void convert_to_grayscale(const cv::Mat& in, cv::Mat& out) { if(in.channels() == 3) { // Make sure it's in a correct format if(in.depth() != CV_8U) { if(in.depth() == CV_16U) { cv::Mat tmp = in / 256; tmp.convertTo(tmp, CV_8U); cv::cvtColor(tmp, out, CV_BGR2GRAY); } } else { cv::cvtColor(in, out, CV_BGR2GRAY); } } else if(in.channels() == 4) { cv::cvtColor(in, out, CV_BGRA2GRAY); } else { if(in.depth() == CV_16U) { cv::Mat tmp = in / 256; out = tmp.clone(); } else if(in.depth() != CV_8U) { in.convertTo(out, CV_8U); } else { out = in.clone(); } } } // Useful utility for creating directories for storing the output files void create_directory_from_file(string output_path) { // Creating the right directory structure // First get rid of the file auto p = boost::filesystem::path(boost::filesystem::path(output_path).parent_path()); if (!p.empty() && !boost::filesystem::exists(p)) { bool success = boost::filesystem::create_directories(p); if (!success) { cout << "Failed to create a directory... " << p.string() << endl; } } } // This will only be accurate when camera parameters are accurate, useful for work on 3D data void write_out_pose_landmarks(const string& outfeatures, const cv::Mat_& shape3D, const cv::Vec6d& pose, const cv::Point3f& gaze0, const cv::Point3f& gaze1) { create_directory_from_file(outfeatures); std::ofstream featuresFile; featuresFile.open(outfeatures); if (featuresFile.is_open()) { int n = shape3D.cols; featuresFile << "version: 1" << endl; featuresFile << "npoints: " << n << endl; featuresFile << "{" << endl; for (int i = 0; i < n; ++i) { // Use matlab format, so + 1 featuresFile << shape3D.at(i) << " " << shape3D.at(i + n) << " " << shape3D.at(i + 2*n) << endl; } featuresFile << "}" << endl; // Do the pose and eye gaze if present as well featuresFile << "pose: eul_x, eul_y, eul_z: " << endl; featuresFile << "{" << endl; featuresFile << pose[3] << " " << pose[4] << " " << pose[5] << endl; featuresFile << "}" << endl; // Do the pose and eye gaze if present as well featuresFile << "gaze_vec: dir_x_1, dir_y_1, dir_z_1, dir_x_2, dir_y_2, dir_z_2: " << endl; featuresFile << "{" << endl; featuresFile << gaze0.x << " " << gaze0.y << " " << gaze0.z << " " << gaze1.x << " " << gaze1.y << " " << gaze1.z << endl; featuresFile << "}" << endl; featuresFile.close(); } } void write_out_landmarks(const string& outfeatures, const LandmarkDetector::CLNF& clnf_model, const cv::Vec6d& pose, const cv::Point3f& gaze0, const cv::Point3f& gaze1, const cv::Vec2d gaze_angle, std::vector> au_intensities, std::vector> au_occurences) { create_directory_from_file(outfeatures); std::ofstream featuresFile; featuresFile.open(outfeatures); if (featuresFile.is_open()) { int n = clnf_model.patch_experts.visibilities[0][0].rows; featuresFile << "version: 2" << endl; featuresFile << "npoints: " << n << endl; featuresFile << "{" << endl; for (int i = 0; i < n; ++i) { // Use matlab format, so + 1 featuresFile << clnf_model.detected_landmarks.at(i) + 1 << " " << clnf_model.detected_landmarks.at(i + n) + 1 << endl; } featuresFile << "}" << endl; // Do the pose and eye gaze if present as well featuresFile << "pose: eul_x, eul_y, eul_z: " << endl; featuresFile << "{" << endl; featuresFile << pose[3] << " " << pose[4] << " " << pose[5] << endl; featuresFile << "}" << endl; featuresFile << "gaze: dir_x_1, dir_y_1, dir_z_1, dir_x_2, dir_y_2, dir_z_2: " << endl; featuresFile << "{" << endl; featuresFile << gaze0.x << " " << gaze0.y << " " << gaze0.z << " " << gaze1.x << " " << gaze1.y << " " << gaze1.z << endl; featuresFile << "}" << endl; featuresFile << "gaze: angle_x, angle_y: " << endl; featuresFile << "{" << endl; featuresFile << gaze_angle[0] << " " << gaze_angle[1] << endl; featuresFile << "}" << endl; std::vector eye_landmark_points = LandmarkDetector::CalculateAllEyeLandmarks(clnf_model); featuresFile << "eye_lmks: " << eye_landmark_points.size() << endl; featuresFile << "{" << endl; for (int i = 0; i < eye_landmark_points.size(); ++i) { // Use matlab format, so + 1 featuresFile << eye_landmark_points[i].x + 1 << " " << eye_landmark_points[i].y + 1 << endl; } featuresFile << "}" << endl; // Do the au intensities featuresFile << "au intensities: " << au_intensities.size() << endl; featuresFile << "{" << endl; for (size_t i = 0; i < au_intensities.size(); ++i) { // Use matlab format, so + 1 featuresFile << au_intensities[i].first << " " << au_intensities[i].second << endl; } featuresFile << "}" << endl; // Do the au occurences featuresFile << "au occurences: " << au_occurences.size() << endl; featuresFile << "{" << endl; for (size_t i = 0; i < au_occurences.size(); ++i) { // Use matlab format, so + 1 featuresFile << au_occurences[i].first << " " << au_occurences[i].second << endl; } featuresFile << "}" << endl; featuresFile.close(); } } void create_display_image(const cv::Mat& orig, cv::Mat& display_image, LandmarkDetector::CLNF& clnf_model) { // Draw head pose if present and draw eye gaze as well // preparing the visualisation image display_image = orig.clone(); // Creating a display image cv::Mat xs = clnf_model.detected_landmarks(cv::Rect(0, 0, 1, clnf_model.detected_landmarks.rows/2)); cv::Mat ys = clnf_model.detected_landmarks(cv::Rect(0, clnf_model.detected_landmarks.rows/2, 1, clnf_model.detected_landmarks.rows/2)); double min_x, max_x, min_y, max_y; cv::minMaxLoc(xs, &min_x, &max_x); cv::minMaxLoc(ys, &min_y, &max_y); double width = max_x - min_x; double height = max_y - min_y; int minCropX = max((int)(min_x-width/3.0),0); int minCropY = max((int)(min_y-height/3.0),0); int widthCrop = min((int)(width*5.0/3.0), display_image.cols - minCropX - 1); int heightCrop = min((int)(height*5.0/3.0), display_image.rows - minCropY - 1); double scaling = 350.0/widthCrop; // first crop the image display_image = display_image(cv::Rect((int)(minCropX), (int)(minCropY), (int)(widthCrop), (int)(heightCrop))); // now scale it cv::resize(display_image.clone(), display_image, cv::Size(), scaling, scaling); // Make the adjustments to points xs = (xs - minCropX)*scaling; ys = (ys - minCropY)*scaling; cv::Mat shape = clnf_model.detected_landmarks.clone(); xs.copyTo(shape(cv::Rect(0, 0, 1, clnf_model.detected_landmarks.rows/2))); ys.copyTo(shape(cv::Rect(0, clnf_model.detected_landmarks.rows/2, 1, clnf_model.detected_landmarks.rows/2))); // Do the shifting for the hierarchical models as well for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part) { cv::Mat xs = clnf_model.hierarchical_models[part].detected_landmarks(cv::Rect(0, 0, 1, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2)); cv::Mat ys = clnf_model.hierarchical_models[part].detected_landmarks(cv::Rect(0, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2, 1, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2)); xs = (xs - minCropX)*scaling; ys = (ys - minCropY)*scaling; cv::Mat shape = clnf_model.hierarchical_models[part].detected_landmarks.clone(); xs.copyTo(shape(cv::Rect(0, 0, 1, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2))); ys.copyTo(shape(cv::Rect(0, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2, 1, clnf_model.hierarchical_models[part].detected_landmarks.rows / 2))); } LandmarkDetector::Draw(display_image, clnf_model); } int main (int argc, char **argv) { //Convert arguments to more convenient vector form vector arguments = get_arguments(argc, argv); // Some initial parameters that can be overriden from command line vector files, output_images, output_landmark_locations, output_pose_locations; // Bounding boxes for a face in each image (optional) vector > bounding_boxes; LandmarkDetector::get_image_input_output_params(files, output_landmark_locations, output_pose_locations, output_images, bounding_boxes, arguments); LandmarkDetector::FaceModelParameters det_parameters(arguments); // No need to validate detections, as we're not doing tracking det_parameters.validate_detections = false; // Grab camera parameters if provided (only used for pose and eye gaze and are quite important for accurate estimates) float fx = 0, fy = 0, cx = 0, cy = 0; int device = -1; LandmarkDetector::get_camera_params(device, fx, fy, cx, cy, arguments); // If cx (optical axis centre) is undefined will use the image size/2 as an estimate bool cx_undefined = false; bool fx_undefined = false; if (cx == 0 || cy == 0) { cx_undefined = true; } if (fx == 0 || fy == 0) { fx_undefined = true; } // The modules that are being used for tracking cout << "Loading the model" << endl; LandmarkDetector::CLNF clnf_model(det_parameters.model_location); cout << "Model loaded" << endl; cv::CascadeClassifier classifier(det_parameters.face_detector_location); dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector(); // Load facial feature extractor and AU analyser (make sure it is static) FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments); face_analysis_params.OptimizeForImages(); FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params); bool visualise = !det_parameters.quiet_mode; // Do some image loading for(size_t i = 0; i < files.size(); i++) { string file = files.at(i); // Loading image cv::Mat read_image = cv::imread(file, -1); if (read_image.empty()) { cout << "Could not read the input image" << endl; return 1; } // Making sure the image is in uchar grayscale cv::Mat_ grayscale_image; convert_to_grayscale(read_image, grayscale_image); // If optical centers are not defined just use center of image if (cx_undefined) { cx = grayscale_image.cols / 2.0f; cy = grayscale_image.rows / 2.0f; } // Use a rough guess-timate of focal length if (fx_undefined) { fx = 500 * (grayscale_image.cols / 640.0); fy = 500 * (grayscale_image.rows / 480.0); fx = (fx + fy) / 2.0; fy = fx; } // if no pose defined we just use a face detector if(bounding_boxes.empty()) { // Detect faces in an image vector > face_detections; if(det_parameters.curr_face_detector == LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR) { vector confidences; LandmarkDetector::DetectFacesHOG(face_detections, grayscale_image, face_detector_hog, confidences); } else { LandmarkDetector::DetectFaces(face_detections, grayscale_image, classifier); } // Detect landmarks around detected faces int face_det = 0; // perform landmark detection for every face detected for(size_t face=0; face < face_detections.size(); ++face) { // if there are multiple detections go through them bool success = LandmarkDetector::DetectLandmarksInImage(grayscale_image, face_detections[face], clnf_model, det_parameters); // Estimate head pose and eye gaze cv::Vec6d headPose = LandmarkDetector::GetCorrectedPoseWorld(clnf_model, fx, fy, cx, cy); // Gaze tracking, absolute gaze direction cv::Point3f gazeDirection0(0, 0, -1); cv::Point3f gazeDirection1(0, 0, -1); cv::Vec2d gazeAngle(0, 0); if (success && det_parameters.track_gaze) { FaceAnalysis::EstimateGaze(clnf_model, gazeDirection0, fx, fy, cx, cy, true); FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false); gazeAngle = FaceAnalysis::GetGazeAngle(gazeDirection0, gazeDirection1); } auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model.detected_landmarks, false); // Writing out the detected landmarks (in an OS independent manner) if(!output_landmark_locations.empty()) { char name[100]; // append detection number (in case multiple faces are detected) sprintf(name, "_det_%d", face_det); // Construct the output filename boost::filesystem::path slash("/"); std::string preferredSlash = slash.make_preferred().string(); boost::filesystem::path out_feat_path(output_landmark_locations.at(i)); boost::filesystem::path dir = out_feat_path.parent_path(); boost::filesystem::path fname = out_feat_path.filename().replace_extension(""); boost::filesystem::path ext = out_feat_path.extension(); string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string(); write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, gazeAngle, ActionUnits.first, ActionUnits.second); } if (!output_pose_locations.empty()) { char name[100]; // append detection number (in case multiple faces are detected) sprintf(name, "_det_%d", face_det); // Construct the output filename boost::filesystem::path slash("/"); std::string preferredSlash = slash.make_preferred().string(); boost::filesystem::path out_pose_path(output_pose_locations.at(i)); boost::filesystem::path dir = out_pose_path.parent_path(); boost::filesystem::path fname = out_pose_path.filename().replace_extension(""); boost::filesystem::path ext = out_pose_path.extension(); string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string(); write_out_pose_landmarks(outfeatures, clnf_model.GetShape(fx, fy, cx, cy), headPose, gazeDirection0, gazeDirection1); } if (det_parameters.track_gaze) { cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetCorrectedPoseWorld(clnf_model, fx, fy, cx, cy); // Draw it in reddish if uncertain, blueish if certain LandmarkDetector::DrawBox(read_image, pose_estimate_to_draw, cv::Scalar(255.0, 0, 0), 3, fx, fy, cx, cy); FaceAnalysis::DrawGaze(read_image, clnf_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy); } // displaying detected landmarks cv::Mat display_image; create_display_image(read_image, display_image, clnf_model); if(visualise && success) { imshow("colour", display_image); cv::waitKey(1); } // Saving the display images (in an OS independent manner) if(!output_images.empty() && success) { string outimage = output_images.at(i); if(!outimage.empty()) { char name[100]; sprintf(name, "_det_%d", face_det); boost::filesystem::path slash("/"); std::string preferredSlash = slash.make_preferred().string(); // append detection number boost::filesystem::path out_feat_path(outimage); boost::filesystem::path dir = out_feat_path.parent_path(); boost::filesystem::path fname = out_feat_path.filename().replace_extension(""); boost::filesystem::path ext = out_feat_path.extension(); outimage = dir.string() + preferredSlash + fname.string() + string(name) + ext.string(); create_directory_from_file(outimage); bool write_success = cv::imwrite(outimage, display_image); if (!write_success) { cout << "Could not output a processed image" << endl; return 1; } } } if(success) { face_det++; } } } else { // Have provided bounding boxes LandmarkDetector::DetectLandmarksInImage(grayscale_image, bounding_boxes[i], clnf_model, det_parameters); // Estimate head pose and eye gaze cv::Vec6d headPose = LandmarkDetector::GetCorrectedPoseWorld(clnf_model, fx, fy, cx, cy); // Gaze tracking, absolute gaze direction cv::Point3f gazeDirection0(0, 0, -1); cv::Point3f gazeDirection1(0, 0, -1); cv::Vec2d gazeAngle(0, 0); if (det_parameters.track_gaze) { FaceAnalysis::EstimateGaze(clnf_model, gazeDirection0, fx, fy, cx, cy, true); FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false); gazeAngle = FaceAnalysis::GetGazeAngle(gazeDirection0, gazeDirection1); } auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model.detected_landmarks, false); // Writing out the detected landmarks if(!output_landmark_locations.empty()) { string outfeatures = output_landmark_locations.at(i); write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, gazeAngle, ActionUnits.first, ActionUnits.second); } // Writing out the detected landmarks if (!output_pose_locations.empty()) { string outfeatures = output_pose_locations.at(i); write_out_pose_landmarks(outfeatures, clnf_model.GetShape(fx, fy, cx, cy), headPose, gazeDirection0, gazeDirection1); } // displaying detected stuff cv::Mat display_image; if (det_parameters.track_gaze) { cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetCorrectedPoseWorld(clnf_model, fx, fy, cx, cy); // Draw it in reddish if uncertain, blueish if certain LandmarkDetector::DrawBox(read_image, pose_estimate_to_draw, cv::Scalar(255.0, 0, 0), 3, fx, fy, cx, cy); FaceAnalysis::DrawGaze(read_image, clnf_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy); } create_display_image(read_image, display_image, clnf_model); if(visualise) { imshow("colour", display_image); cv::waitKey(1); } if(!output_images.empty()) { string outimage = output_images.at(i); if(!outimage.empty()) { create_directory_from_file(outimage); bool write_success = imwrite(outimage, display_image); if (!write_success) { cout << "Could not output a processed image" << endl; return 1; } } } } } return 0; }