/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include // OpenCV includes #include #include #include // System includes #include using namespace LandmarkDetector; // Getting a head pose estimate from the currently detected landmarks (rotation with respect to point camera) // The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z] cv::Vec6d LandmarkDetector::GetPoseCamera(const CLNF& clnf_model, double fx, double fy, double cx, double cy) { if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0) { double Z = fx / clnf_model.params_global[0]; double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z; double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z; return cv::Vec6d(X, Y, Z, clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]); } else { return cv::Vec6d(0,0,0,0,0,0); } } // Getting a head pose estimate from the currently detected landmarks (rotation in world coordinates) // The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z] cv::Vec6d LandmarkDetector::GetPoseWorld(const CLNF& clnf_model, double fx, double fy, double cx, double cy) { if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0) { double Z = fx / clnf_model.params_global[0]; double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z; double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z; // Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose double z_x = cv::sqrt(X * X + Z * Z); double eul_x = atan2(Y, z_x); double z_y = cv::sqrt(Y * Y + Z * Z); double eul_y = -atan2(X, z_y); cv::Matx33d camera_rotation = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(eul_x, eul_y, 0)); cv::Matx33d head_rotation = LandmarkDetector::AxisAngle2RotationMatrix(cv::Vec3d(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3])); cv::Matx33d corrected_rotation = camera_rotation.t() * head_rotation; cv::Vec3d euler_corrected = LandmarkDetector::RotationMatrix2Euler(corrected_rotation); return cv::Vec6d(X, Y, Z, euler_corrected[0], euler_corrected[1], euler_corrected[2]); } else { return cv::Vec6d(0,0,0,0,0,0); } } // Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to orthographic camera issue // This is because rotation estimate under orthographic assumption is only correct close to the centre of the image // This method returns a corrected pose estimate with respect to world coordinates (Experimental) // The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z] cv::Vec6d LandmarkDetector::GetCorrectedPoseWorld(const CLNF& clnf_model, double fx, double fy, double cx, double cy) { if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0) { // This is used as an initial estimate for the iterative PnP algorithm double Z = fx / clnf_model.params_global[0]; double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z; double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z; // Correction for orientation // 2D points cv::Mat_ landmarks_2D = clnf_model.detected_landmarks; landmarks_2D = landmarks_2D.reshape(1, 2).t(); // 3D points cv::Mat_ landmarks_3D; clnf_model.pdm.CalcShape3D(landmarks_3D, clnf_model.params_local); landmarks_3D = landmarks_3D.reshape(1, 3).t(); // Solving the PNP model // The camera matrix cv::Matx33d camera_matrix(fx, 0, cx, 0, fy, cy, 0, 0, 1); cv::Vec3d vec_trans(X, Y, Z); cv::Vec3d vec_rot(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]); cv::solvePnP(landmarks_3D, landmarks_2D, camera_matrix, cv::Mat(), vec_rot, vec_trans, true); cv::Vec3d euler = LandmarkDetector::AxisAngle2Euler(vec_rot); return cv::Vec6d(vec_trans[0], vec_trans[1], vec_trans[2], vec_rot[0], vec_rot[1], vec_rot[2]); } else { return cv::Vec6d(0,0,0,0,0,0); } } // Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to perspective projection // This method returns a corrected pose estimate with respect to a point camera (NOTE not the world coordinates) (Experimental) // The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z] cv::Vec6d LandmarkDetector::GetCorrectedPoseCamera(const CLNF& clnf_model, double fx, double fy, double cx, double cy) { if(!clnf_model.detected_landmarks.empty() && clnf_model.params_global[0] != 0) { double Z = fx / clnf_model.params_global[0]; double X = ((clnf_model.params_global[4] - cx) * (1.0/fx)) * Z; double Y = ((clnf_model.params_global[5] - cy) * (1.0/fy)) * Z; // Correction for orientation // 3D points cv::Mat_ landmarks_3D; clnf_model.pdm.CalcShape3D(landmarks_3D, clnf_model.params_local); landmarks_3D = landmarks_3D.reshape(1, 3).t(); // 2D points cv::Mat_ landmarks_2D = clnf_model.detected_landmarks; landmarks_2D = landmarks_2D.reshape(1, 2).t(); // Solving the PNP model // The camera matrix cv::Matx33d camera_matrix(fx, 0, cx, 0, fy, cy, 0, 0, 1); cv::Vec3d vec_trans(X, Y, Z); cv::Vec3d vec_rot(clnf_model.params_global[1], clnf_model.params_global[2], clnf_model.params_global[3]); cv::solvePnP(landmarks_3D, landmarks_2D, camera_matrix, cv::Mat(), vec_rot, vec_trans, true); // Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose double z_x = cv::sqrt(vec_trans[0] * vec_trans[0] + vec_trans[2] * vec_trans[2]); double eul_x = atan2(vec_trans[1], z_x); double z_y = cv::sqrt(vec_trans[1] * vec_trans[1] + vec_trans[2] * vec_trans[2]); double eul_y = -atan2(vec_trans[0], z_y); cv::Matx33d camera_rotation = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(eul_x, eul_y, 0)); cv::Matx33d head_rotation = LandmarkDetector::AxisAngle2RotationMatrix(vec_rot); cv::Matx33d corrected_rotation = camera_rotation * head_rotation; cv::Vec3d euler_corrected = LandmarkDetector::RotationMatrix2Euler(corrected_rotation); return cv::Vec6d(vec_trans[0], vec_trans[1], vec_trans[2], euler_corrected[0], euler_corrected[1], euler_corrected[2]); } else { return cv::Vec6d(0,0,0,0,0,0); } } // If landmark detection in video succeeded create a template for use in simple tracking void UpdateTemplate(const cv::Mat_ &grayscale_image, CLNF& clnf_model) { cv::Rect bounding_box; clnf_model.pdm.CalcBoundingBox(bounding_box, clnf_model.params_global, clnf_model.params_local); // Make sure the box is not out of bounds bounding_box = bounding_box & cv::Rect(0, 0, grayscale_image.cols, grayscale_image.rows); clnf_model.face_template = grayscale_image(bounding_box).clone(); } // This method uses basic template matching in order to allow for better tracking of fast moving faces void CorrectGlobalParametersVideo(const cv::Mat_ &grayscale_image, CLNF& clnf_model, const FaceModelParameters& params) { cv::Rect init_box; clnf_model.pdm.CalcBoundingBox(init_box, clnf_model.params_global, clnf_model.params_local); cv::Rect roi(init_box.x - init_box.width/2, init_box.y - init_box.height/2, init_box.width * 2, init_box.height * 2); roi = roi & cv::Rect(0, 0, grayscale_image.cols, grayscale_image.rows); int off_x = roi.x; int off_y = roi.y; double scaling = params.face_template_scale / clnf_model.params_global[0]; cv::Mat_ image; if(scaling < 1) { cv::resize(clnf_model.face_template, clnf_model.face_template, cv::Size(), scaling, scaling); cv::resize(grayscale_image(roi), image, cv::Size(), scaling, scaling); } else { scaling = 1; image = grayscale_image(roi).clone(); } // Resizing the template cv::Mat corr_out; cv::matchTemplate(image, clnf_model.face_template, corr_out, CV_TM_CCOEFF_NORMED); // Actually matching it //double min, max; int max_loc[2]; cv::minMaxIdx(corr_out, NULL, NULL, NULL, max_loc); cv::Rect_ out_bbox(max_loc[1]/scaling + off_x, max_loc[0]/scaling + off_y, clnf_model.face_template.rows / scaling, clnf_model.face_template.cols / scaling); double shift_x = out_bbox.x - (double)init_box.x; double shift_y = out_bbox.y - (double)init_box.y; clnf_model.params_global[4] = clnf_model.params_global[4] + shift_x; clnf_model.params_global[5] = clnf_model.params_global[5] + shift_y; } bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_ &grayscale_image, CLNF& clnf_model, FaceModelParameters& params) { // First need to decide if the landmarks should be "detected" or "tracked" // Detected means running face detection and a larger search area, tracked means initialising from previous step // and using a smaller search area // Indicating that this is a first detection in video sequence or after restart bool initial_detection = !clnf_model.tracking_initialised; // Only do it if there was a face detection at all if(clnf_model.tracking_initialised) { // The area of interest search size will depend if the previous track was successful if(!clnf_model.detection_success) { params.window_sizes_current = params.window_sizes_init; } else { params.window_sizes_current = params.window_sizes_small; } // Before the expensive landmark detection step apply a quick template tracking approach if(params.use_face_template && !clnf_model.face_template.empty() && clnf_model.detection_success) { CorrectGlobalParametersVideo(grayscale_image, clnf_model, params); } bool track_success = clnf_model.DetectLandmarks(grayscale_image, params); if(!track_success) { // Make a record that tracking failed clnf_model.failures_in_a_row++; } else { // indicate that tracking is a success clnf_model.failures_in_a_row = -1; UpdateTemplate(grayscale_image, clnf_model); } } // This is used for both detection (if it the tracking has not been initialised yet) or if the tracking failed (however we do this every n frames, for speed) // This also has the effect of an attempt to reinitialise just after the tracking has failed, which is useful during large motions if((!clnf_model.tracking_initialised && (clnf_model.failures_in_a_row + 1) % (params.reinit_video_every * 6) == 0) || (clnf_model.tracking_initialised && !clnf_model.detection_success && params.reinit_video_every > 0 && clnf_model.failures_in_a_row % params.reinit_video_every == 0)) { cv::Rect_ bounding_box; // If the face detector has not been initialised read it in if(clnf_model.face_detector_HAAR.empty()) { clnf_model.face_detector_HAAR.load(params.face_detector_location); clnf_model.face_detector_location = params.face_detector_location; } cv::Point preference_det(-1, -1); if(clnf_model.preference_det.x != -1 && clnf_model.preference_det.y != -1) { preference_det.x = clnf_model.preference_det.x * grayscale_image.cols; preference_det.y = clnf_model.preference_det.y * grayscale_image.rows; clnf_model.preference_det = cv::Point(-1, -1); } bool face_detection_success; if(params.curr_face_detector == FaceModelParameters::HOG_SVM_DETECTOR) { double confidence; face_detection_success = LandmarkDetector::DetectSingleFaceHOG(bounding_box, grayscale_image, clnf_model.face_detector_HOG, confidence, preference_det); } else if(params.curr_face_detector == FaceModelParameters::HAAR_DETECTOR) { face_detection_success = LandmarkDetector::DetectSingleFace(bounding_box, grayscale_image, clnf_model.face_detector_HAAR, preference_det); } // Attempt to detect landmarks using the detected face (if unseccessful the detection will be ignored) if(face_detection_success) { // Indicate that tracking has started as a face was detected clnf_model.tracking_initialised = true; // Keep track of old model values so that they can be restored if redetection fails cv::Vec6d params_global_init = clnf_model.params_global; cv::Mat_ params_local_init = clnf_model.params_local.clone(); double likelihood_init = clnf_model.model_likelihood; cv::Mat_ detected_landmarks_init = clnf_model.detected_landmarks.clone(); cv::Mat_ landmark_likelihoods_init = clnf_model.landmark_likelihoods.clone(); // Use the detected bounding box and empty local parameters clnf_model.params_local.setTo(0); clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local); // Make sure the search size is large params.window_sizes_current = params.window_sizes_init; // Do the actual landmark detection (and keep it only if successful) bool landmark_detection_success = clnf_model.DetectLandmarks(grayscale_image, params); // If landmark reinitialisation unsucessful continue from previous estimates // if it's initial detection however, do not care if it was successful as the validator might be wrong, so continue trackig // regardless if(!initial_detection && !landmark_detection_success) { // Restore previous estimates clnf_model.params_global = params_global_init; clnf_model.params_local = params_local_init.clone(); clnf_model.pdm.CalcShape2D(clnf_model.detected_landmarks, clnf_model.params_local, clnf_model.params_global); clnf_model.model_likelihood = likelihood_init; clnf_model.detected_landmarks = detected_landmarks_init.clone(); clnf_model.landmark_likelihoods = landmark_likelihoods_init.clone(); return false; } else { clnf_model.failures_in_a_row = -1; UpdateTemplate(grayscale_image, clnf_model); return true; } } } // if the model has not been initialised yet class it as a failure if(!clnf_model.tracking_initialised) { clnf_model.failures_in_a_row++; } // un-initialise the tracking if( clnf_model.failures_in_a_row > 100) { clnf_model.tracking_initialised = false; } return clnf_model.detection_success; } bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_ &grayscale_image, const cv::Rect_ bounding_box, CLNF& clnf_model, FaceModelParameters& params) { if(bounding_box.width > 0) { // calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown) clnf_model.params_local.setTo(0); clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local); // indicate that face was detected so initialisation is not necessary clnf_model.tracking_initialised = true; } return DetectLandmarksInVideo(grayscale_image, clnf_model, params); } //================================================================================================================ // Landmark detection in image, need to provide an image and optionally CLNF model together with parameters (default values work well) // Optionally can provide a bounding box in which detection is performed (this is useful if multiple faces are to be detected in images) //================================================================================================================ // This is the one where the actual work gets done, other DetectLandmarksInImage calls lead to this one bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_ &grayscale_image, const cv::Rect_ bounding_box, CLNF& clnf_model, FaceModelParameters& params) { // Can have multiple hypotheses vector rotation_hypotheses; if(params.multi_view) { // Try out different orientation initialisations // It is possible to add other orientation hypotheses easilly by just pushing to this vector rotation_hypotheses.push_back(cv::Vec3d(0,0,0)); rotation_hypotheses.push_back(cv::Vec3d(0,0.5236,0)); rotation_hypotheses.push_back(cv::Vec3d(0,-0.5236,0)); rotation_hypotheses.push_back(cv::Vec3d(0.5236,0,0)); rotation_hypotheses.push_back(cv::Vec3d(-0.5236,0,0)); } else { // Assume the face is close to frontal rotation_hypotheses.push_back(cv::Vec3d(0,0,0)); } // Use the initialisation size for the landmark detection params.window_sizes_current = params.window_sizes_init; // Store the current best estimate double best_likelihood; cv::Vec6d best_global_parameters; cv::Mat_ best_local_parameters; cv::Mat_ best_detected_landmarks; cv::Mat_ best_landmark_likelihoods; bool best_success; // The hierarchical model parameters vector best_likelihood_h(clnf_model.hierarchical_models.size()); vector best_global_parameters_h(clnf_model.hierarchical_models.size()); vector> best_local_parameters_h(clnf_model.hierarchical_models.size()); vector> best_detected_landmarks_h(clnf_model.hierarchical_models.size()); vector> best_landmark_likelihoods_h(clnf_model.hierarchical_models.size()); for(size_t hypothesis = 0; hypothesis < rotation_hypotheses.size(); ++hypothesis) { // Reset the potentially set clnf_model parameters clnf_model.params_local.setTo(0.0); for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part) { clnf_model.hierarchical_models[part].params_local.setTo(0.0); } // calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown) clnf_model.pdm.CalcParams(clnf_model.params_global, bounding_box, clnf_model.params_local, rotation_hypotheses[hypothesis]); bool success = clnf_model.DetectLandmarks(grayscale_image, params); if(hypothesis == 0 || best_likelihood < clnf_model.model_likelihood) { best_likelihood = clnf_model.model_likelihood; best_global_parameters = clnf_model.params_global; best_local_parameters = clnf_model.params_local.clone(); best_detected_landmarks = clnf_model.detected_landmarks.clone(); best_landmark_likelihoods = clnf_model.landmark_likelihoods.clone(); best_success = success; } for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part) { if (hypothesis == 0 || best_likelihood < clnf_model.hierarchical_models[part].model_likelihood) { best_likelihood_h[part] = clnf_model.hierarchical_models[part].model_likelihood; best_global_parameters_h[part] = clnf_model.hierarchical_models[part].params_global; best_local_parameters_h[part] = clnf_model.hierarchical_models[part].params_local.clone(); best_detected_landmarks_h[part] = clnf_model.hierarchical_models[part].detected_landmarks.clone(); best_landmark_likelihoods_h[part] = clnf_model.hierarchical_models[part].landmark_likelihoods.clone(); } } } // Store the best estimates in the clnf_model clnf_model.model_likelihood = best_likelihood; clnf_model.params_global = best_global_parameters; clnf_model.params_local = best_local_parameters.clone(); clnf_model.detected_landmarks = best_detected_landmarks.clone(); clnf_model.detection_success = best_success; clnf_model.landmark_likelihoods = best_landmark_likelihoods.clone(); for (size_t part = 0; part < clnf_model.hierarchical_models.size(); ++part) { clnf_model.hierarchical_models[part].params_global = best_global_parameters_h[part]; clnf_model.hierarchical_models[part].params_local = best_local_parameters_h[part].clone(); clnf_model.hierarchical_models[part].detected_landmarks = best_detected_landmarks_h[part].clone(); clnf_model.hierarchical_models[part].landmark_likelihoods = best_landmark_likelihoods_h[part].clone(); } return best_success; } bool LandmarkDetector::DetectLandmarksInImage(const cv::Mat_ &grayscale_image, CLNF& clnf_model, FaceModelParameters& params) { cv::Rect_ bounding_box; // If the face detector has not been initialised read it in if(clnf_model.face_detector_HAAR.empty()) { clnf_model.face_detector_HAAR.load(params.face_detector_location); clnf_model.face_detector_location = params.face_detector_location; } // Detect the face first if(params.curr_face_detector == FaceModelParameters::HOG_SVM_DETECTOR) { double confidence; LandmarkDetector::DetectSingleFaceHOG(bounding_box, grayscale_image, clnf_model.face_detector_HOG, confidence); } else if(params.curr_face_detector == FaceModelParameters::HAAR_DETECTOR) { LandmarkDetector::DetectSingleFace(bounding_box, grayscale_image, clnf_model.face_detector_HAAR); } if(bounding_box.width == 0) { return false; } else { return DetectLandmarksInImage(grayscale_image, bounding_box, clnf_model, params); } }