/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "FaceAnalyser.h" // OpenCV includes #include #include // System includes #include #include #include #include // Boost includes #include #include #include #include // Local includes #include "Face_utils.h" using namespace FaceAnalysis; using namespace std; // Constructor from a model file (or a default one if not provided FaceAnalyser::FaceAnalyser(const FaceAnalysis::FaceAnalyserParameters& face_analyser_params) { this->Read(face_analyser_params.getModelLoc()); align_scale_out = face_analyser_params.getSimScaleOut(); align_width_out = face_analyser_params.getSimSizeOut(); align_height_out = face_analyser_params.getSimSizeOut(); align_scale_au = face_analyser_params.sim_scale_au; align_width_au = face_analyser_params.sim_size_au; align_height_au = face_analyser_params.sim_size_au; // Initialise the histograms that will represent bins from 0 - 1 (as HoG values are only stored as those) num_bins_hog = 1000; max_val_hog = 1; min_val_hog = -0.005; // The geometry histogram ranges from -60 to 60 num_bins_geom = 10000; max_val_geom = 60; min_val_geom = -60; // Keep track for how many frames have been tracked so far frames_tracking = 0; // If the model used is dynamic (person callibration and video correction) dynamic = face_analyser_params.getDynamic(); out_grayscale = face_analyser_params.grayscale; if(face_analyser_params.getOrientationBins().empty()) { // Just using frontal currently head_orientations.push_back(cv::Vec3d(0,0,0)); } else { head_orientations = face_analyser_params.getOrientationBins(); } hog_hist_sum.resize(head_orientations.size()); face_image_hist_sum.resize(head_orientations.size()); hog_desc_hist.resize(head_orientations.size()); geom_hist_sum = 0; face_image_hist.resize(head_orientations.size()); au_prediction_correction_count.resize(head_orientations.size(), 0); au_prediction_correction_histogram.resize(head_orientations.size()); dyn_scaling.resize(head_orientations.size()); } // Utility for getting the names of returned AUs (presence) std::vector FaceAnalyser::GetAUClassNames() const { std::vector au_class_names_all; std::vector au_class_names_stat = AU_SVM_static_appearance_lin.GetAUNames(); std::vector au_class_names_dyn = AU_SVM_dynamic_appearance_lin.GetAUNames(); for (size_t i = 0; i < au_class_names_stat.size(); ++i) { au_class_names_all.push_back(au_class_names_stat[i]); } for (size_t i = 0; i < au_class_names_dyn.size(); ++i) { au_class_names_all.push_back(au_class_names_dyn[i]); } return au_class_names_all; } // Utility for getting the names of returned AUs (intensity) std::vector FaceAnalyser::GetAURegNames() const { std::vector au_reg_names_all; std::vector au_reg_names_stat = AU_SVR_static_appearance_lin_regressors.GetAUNames(); std::vector au_reg_names_dyn = AU_SVR_dynamic_appearance_lin_regressors.GetAUNames(); for (size_t i = 0; i < au_reg_names_stat.size(); ++i) { au_reg_names_all.push_back(au_reg_names_stat[i]); } for (size_t i = 0; i < au_reg_names_dyn.size(); ++i) { au_reg_names_all.push_back(au_reg_names_dyn[i]); } return au_reg_names_all; } std::vector FaceAnalyser::GetDynamicAUClass() const { std::vector au_dynamic_class; std::vector au_class_names_stat = AU_SVM_static_appearance_lin.GetAUNames(); std::vector au_class_names_dyn = AU_SVM_dynamic_appearance_lin.GetAUNames(); for (size_t i = 0; i < au_class_names_stat.size(); ++i) { au_dynamic_class.push_back(false); } for (size_t i = 0; i < au_class_names_dyn.size(); ++i) { au_dynamic_class.push_back(true); } return au_dynamic_class; } std::vector> FaceAnalyser::GetDynamicAUReg() const { std::vector> au_dynamic_reg; std::vector au_reg_names_stat = AU_SVR_static_appearance_lin_regressors.GetAUNames(); std::vector au_reg_names_dyn = AU_SVR_dynamic_appearance_lin_regressors.GetAUNames(); for (size_t i = 0; i < au_reg_names_stat.size(); ++i) { au_dynamic_reg.push_back(std::pair(au_reg_names_stat[i], false)); } for (size_t i = 0; i < au_reg_names_dyn.size(); ++i) { au_dynamic_reg.push_back(std::pair(au_reg_names_dyn[i], true)); } return au_dynamic_reg; } cv::Mat_ FaceAnalyser::GetTriangulation() { return triangulation.clone(); } void FaceAnalyser::GetLatestHOG(cv::Mat_& hog_descriptor, int& num_rows, int& num_cols) { hog_descriptor = this->hog_desc_frame.clone(); if(!hog_desc_frame.empty()) { num_rows = this->num_hog_rows; num_cols = this->num_hog_cols; } else { num_rows = 0; num_cols = 0; } } void FaceAnalyser::GetLatestAlignedFace(cv::Mat& image) { image = this->aligned_face_for_output.clone(); } void FaceAnalyser::GetLatestNeutralHOG(cv::Mat_& hog_descriptor, int& num_rows, int& num_cols) { hog_descriptor = this->hog_desc_median; if(!hog_desc_median.empty()) { num_rows = this->num_hog_rows; num_cols = this->num_hog_cols; } else { num_rows = 0; num_cols = 0; } } // Getting the closest view center based on orientation int GetViewId(const vector orientations_all, const cv::Vec3d& orientation) { int id = 0; double dbest = -1.0; for(size_t i = 0; i < orientations_all.size(); i++) { // Distance to current view double d = cv::norm(orientation, orientations_all[i]); if(i == 0 || d < dbest) { dbest = d; id = i; } } return id; } void FaceAnalyser::PredictStaticAUsAndComputeFeatures(const cv::Mat& frame, const cv::Mat_& detected_landmarks) { // Extract shape parameters from the detected landmarks cv::Vec6f params_global; cv::Mat_ params_local; pdm.CalcParams(params_global, params_local, detected_landmarks); // First align the face AlignFaceMask(aligned_face_for_au, frame, detected_landmarks, params_global, pdm, triangulation, true, 0.7, 112, 112); // If the output requirement matches use the already computed one, else compute it again if (align_scale_out == align_scale_au && align_width_out == align_width_au && align_height_out == align_height_au) { aligned_face_for_output = aligned_face_for_au.clone(); } else { AlignFaceMask(aligned_face_for_output, frame, detected_landmarks, params_global, pdm, triangulation, true, align_scale_out, align_width_out, align_height_out); } // Extract HOG descriptor from the frame and convert it to a useable format cv::Mat_ hog_descriptor; Extract_FHOG_descriptor(hog_descriptor, aligned_face_for_au, this->num_hog_rows, this->num_hog_cols); // Store the descriptor hog_desc_frame = hog_descriptor; cv::Vec3d curr_orient(params_global[1], params_global[2], params_global[3]); int orientation_to_use = GetViewId(this->head_orientations, curr_orient); // Geom descriptor and its median, TODO these should be floats? params_local = params_local.t(); params_local.convertTo(geom_descriptor_frame, CV_64F); cv::Mat_ princ_comp_d; pdm.princ_comp.convertTo(princ_comp_d, CV_64F); // Stack with the actual feature point locations (without mean) cv::Mat_ locs = princ_comp_d * geom_descriptor_frame.t(); cv::hconcat(locs.t(), geom_descriptor_frame.clone(), geom_descriptor_frame); // First convert the face image to double representation as a row vector, TODO rem //cv::Mat_ aligned_face_cols(1, aligned_face_for_au.cols * aligned_face_for_au.rows * aligned_face_for_au.channels(), aligned_face_for_au.data, 1); //cv::Mat_ aligned_face_cols_double; //aligned_face_cols.convertTo(aligned_face_cols_double, CV_64F); // Perform AU prediction auto AU_predictions_intensity = PredictCurrentAUs(orientation_to_use); auto AU_predictions_occurence = PredictCurrentAUsClass(orientation_to_use); // Make sure intensity is within range (0-5) for (size_t au = 0; au < AU_predictions_intensity.size(); ++au) { if (AU_predictions_intensity[au].second < 0) AU_predictions_intensity[au].second = 0; if (AU_predictions_intensity[au].second > 5) AU_predictions_intensity[au].second = 5; } AU_predictions_reg = AU_predictions_intensity; AU_predictions_class = AU_predictions_occurence; } void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const cv::Mat_& detected_landmarks, bool success, double timestamp_seconds, bool online) { frames_tracking++; // Extract shape parameters from the detected landmarks cv::Vec6f params_global; cv::Mat_ params_local; // First align the face if tracking was successfull if(success) { pdm.CalcParams(params_global, params_local, detected_landmarks); // The aligned face requirement for AUs AlignFaceMask(aligned_face_for_au, frame, detected_landmarks, params_global, pdm, triangulation, true, align_scale_au, align_width_au, align_height_au); // If the output requirement matches use the already computed one, else compute it again if(align_scale_out == align_scale_au && align_width_out == align_width_au && align_height_out == align_height_au) { aligned_face_for_output = aligned_face_for_au.clone(); } else { AlignFaceMask(aligned_face_for_output, frame, detected_landmarks, params_global, pdm, triangulation, true, align_scale_out, align_width_out, align_height_out); } } else { aligned_face_for_output = cv::Mat(align_height_out, align_width_out, CV_8UC3); aligned_face_for_au = cv::Mat(align_height_au, align_width_au, CV_8UC3); aligned_face_for_output.setTo(0); aligned_face_for_au.setTo(0); params_local = cv::Mat_(pdm.NumberOfModes(), 1, 0.0f); } if (aligned_face_for_output.channels() == 3 && out_grayscale) { cvtColor(aligned_face_for_output, aligned_face_for_output, CV_BGR2GRAY); } // Extract HOG descriptor from the frame and convert it to a useable format cv::Mat_ hog_descriptor; Extract_FHOG_descriptor(hog_descriptor, aligned_face_for_au, this->num_hog_rows, this->num_hog_cols); // Store the descriptor hog_desc_frame = hog_descriptor; cv::Vec3d curr_orient(params_global[1], params_global[2], params_global[3]); int orientation_to_use = GetViewId(this->head_orientations, curr_orient); // Only update the running median if predictions are not high // That is don't update it when the face is expressive (just retrieve it) bool update_median = true; // TODO test if this would be useful or not //if(!this->AU_predictions_reg.empty()) //{ // vector> dyns = this->GetDynamicAUReg(); // for(size_t i = 0; i < this->AU_predictions_reg.size(); ++i) // { // bool stat = false; // for (size_t n = 0; n < dyns.size(); ++n) // { // if (dyns[n].first.compare(AU_predictions_reg[i].first) == 0) // { // stat = !dyns[i].second; // } // } // // If static predictor above 1.5 assume it's not a neutral face // if(this->AU_predictions_reg[i].second > 1.5 && stat) // { // update_median = false; // break; // } // } //} update_median = update_median & success; if (success) frames_tracking_succ++; // A small speedup if(frames_tracking % 2 == 1) { UpdateRunningMedian(this->hog_desc_hist[orientation_to_use], this->hog_hist_sum[orientation_to_use], this->hog_desc_median, hog_descriptor, update_median, this->num_bins_hog, this->min_val_hog, this->max_val_hog); this->hog_desc_median.setTo(0, this->hog_desc_median < 0); } // Geom descriptor and its median params_local = params_local.t(); params_local.convertTo(geom_descriptor_frame, CV_64F); if(!success) { geom_descriptor_frame.setTo(0); } // Stack with the actual feature point locations (without mean) // TODO rem double cv::Mat_ princ_comp_d; pdm.princ_comp.convertTo(princ_comp_d, CV_64F); cv::Mat_ locs = princ_comp_d * geom_descriptor_frame.t(); cv::hconcat(locs.t(), geom_descriptor_frame.clone(), geom_descriptor_frame); // A small speedup if(frames_tracking % 2 == 1) { UpdateRunningMedian(this->geom_desc_hist, this->geom_hist_sum, this->geom_descriptor_median, geom_descriptor_frame, update_median, this->num_bins_geom, this->min_val_geom, this->max_val_geom); } // Perform AU prediction AU_predictions_reg = PredictCurrentAUs(orientation_to_use); // Add the reg predictions to the historic data for (size_t au = 0; au < AU_predictions_reg.size(); ++au) { // Find the appropriate AU (if not found add it) // Only add if the detection was successful if(success) { AU_predictions_reg_all_hist[AU_predictions_reg[au].first].push_back(AU_predictions_reg[au].second); } else { AU_predictions_reg_all_hist[AU_predictions_reg[au].first].push_back(0); // Also invalidate AU if not successful AU_predictions_reg[au].second = 0; } } AU_predictions_class = PredictCurrentAUsClass(orientation_to_use); for (size_t au = 0; au < AU_predictions_class.size(); ++au) { // Find the appropriate AU (if not found add it) // Only add if the detection was successful if(success) { AU_predictions_class_all_hist[AU_predictions_class[au].first].push_back(AU_predictions_class[au].second); } else { AU_predictions_class_all_hist[AU_predictions_class[au].first].push_back(0); // Also invalidate AU if not successful AU_predictions_class[au].second = 0; } } // A workaround for online predictions to make them a bit more accurate std::vector> AU_predictions_reg_corrected; if (online) { AU_predictions_reg_corrected = CorrectOnlineAUs(AU_predictions_reg, orientation_to_use, true, false, success, true); AU_predictions_reg = AU_predictions_reg_corrected; } // Useful for prediction corrections (calibration after the whole video is processed) if (success && frames_tracking_succ - 1 < max_init_frames) { hog_desc_frames_init.push_back(hog_descriptor); geom_descriptor_frames_init.push_back(geom_descriptor_frame); views.push_back(orientation_to_use); } this->current_time_seconds = timestamp_seconds; view_used = orientation_to_use; valid_preds.push_back(success); timestamps.push_back(timestamp_seconds); } void FaceAnalyser::GetGeomDescriptor(cv::Mat_& geom_desc) { geom_desc = this->geom_descriptor_frame.clone(); } // Perform prediction on initial n frames anew as the current neutral face estimate is better now void FaceAnalyser::PostprocessPredictions() { if(!postprocessed) { int success_ind = 0; int all_ind = 0; int all_frames_size = timestamps.size(); while(all_ind < all_frames_size && success_ind < max_init_frames) { if(valid_preds[all_ind]) { this->hog_desc_frame = hog_desc_frames_init[success_ind]; this->geom_descriptor_frame = geom_descriptor_frames_init[success_ind]; // Perform AU prediction auto AU_predictions_reg = PredictCurrentAUs(views[success_ind]); // Modify the predictions to the historic data for (size_t au = 0; au < AU_predictions_reg.size(); ++au) { // Find the appropriate AU (if not found add it) AU_predictions_reg_all_hist[AU_predictions_reg[au].first][all_ind] = AU_predictions_reg[au].second; } auto AU_predictions_class = PredictCurrentAUsClass(views[success_ind]); for (size_t au = 0; au < AU_predictions_class.size(); ++au) { // Find the appropriate AU (if not found add it) AU_predictions_class_all_hist[AU_predictions_class[au].first][all_ind] = AU_predictions_class[au].second; } success_ind++; } all_ind++; } postprocessed = true; } } void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector>>& au_predictions, vector& confidences, vector& successes, vector& timestamps, bool dynamic) { if(dynamic) { PostprocessPredictions(); } timestamps = this->timestamps; au_predictions.clear(); // First extract the valid AU values and put them in a different format vector> aus_valid; vector offsets; successes = this->valid_preds; vector dyn_au_names = AU_SVR_dynamic_appearance_lin_regressors.GetAUNames(); // Allow these AUs to be person calirated based on expected number of neutral frames (learned from the data) for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter) { vector au_good; string au_name = au_iter->first; vector au_vals = au_iter->second; au_predictions.push_back(std::pair>(au_name, au_vals)); for(size_t frame = 0; frame < au_vals.size(); ++frame) { if(successes[frame]) { au_good.push_back(au_vals[frame]); } } if(au_good.empty() || !dynamic) { offsets.push_back(0.0); } else { std::sort(au_good.begin(), au_good.end()); // If it is a dynamic AU regressor we can also do some prediction shifting to make it more accurate // The shifting proportion is learned and is callen cutoff // Find the current id of the AU and the corresponding cutoff int au_id = -1; for (size_t a = 0; a < dyn_au_names.size(); ++a) { if (au_name.compare(dyn_au_names[a]) == 0) { au_id = a; } } if (au_id != -1 && AU_SVR_dynamic_appearance_lin_regressors.GetCutoffs()[au_id] != -1) { double cutoff = AU_SVR_dynamic_appearance_lin_regressors.GetCutoffs()[au_id]; offsets.push_back(au_good.at((double)au_good.size() * cutoff)); } else { offsets.push_back(0); } } aus_valid.push_back(au_good); } // sort each of the aus and adjust the dynamic ones for(size_t au = 0; au < au_predictions.size(); ++au) { for(size_t frame = 0; frame < au_predictions[au].second.size(); ++frame) { if(successes[frame]) { double scaling = 1; au_predictions[au].second[frame] = (au_predictions[au].second[frame] - offsets[au]) * scaling; if(au_predictions[au].second[frame] < 0.0) au_predictions[au].second[frame] = 0; if(au_predictions[au].second[frame] > 5) au_predictions[au].second[frame] = 5; } else { au_predictions[au].second[frame] = 0; } } } // Perform some prediction smoothing for (auto au_iter = au_predictions.begin(); au_iter != au_predictions.end(); ++au_iter) { string au_name = au_iter->first; // Perform a moving average of 3 frames int window_size = 3; vector au_vals_tmp = au_iter->second; for (size_t i = (window_size - 1) / 2; i < au_iter->second.size() - (window_size - 1) / 2; ++i) { double sum = 0; for (int w = -(window_size - 1) / 2; w <= (window_size - 1) / 2; ++w) { sum += au_vals_tmp[i + w]; } sum = sum / window_size; au_iter->second[i] = sum; } } } void FaceAnalyser::ExtractAllPredictionsOfflineClass(vector>>& au_predictions, vector& confidences, vector& successes, vector& timestamps, bool dynamic) { if (dynamic) { PostprocessPredictions(); } timestamps = this->timestamps; au_predictions.clear(); for(auto au_iter = AU_predictions_class_all_hist.begin(); au_iter != AU_predictions_class_all_hist.end(); ++au_iter) { string au_name = au_iter->first; vector au_vals = au_iter->second; // Perform a moving average of 7 frames on classifications int window_size = 7; vector au_vals_tmp = au_vals; for (size_t i = (window_size - 1)/2; i < au_vals.size() - (window_size - 1) / 2; ++i) { double sum = 0; for (int w = -(window_size - 1) / 2; w <= (window_size - 1) / 2; ++w) { sum += au_vals_tmp[i + w]; } sum = sum / window_size; if (sum < 0.5) sum = 0; else sum = 1; au_vals[i] = sum; } au_predictions.push_back(std::pair>(au_name, au_vals)); } successes = this->valid_preds; } // Reset the models void FaceAnalyser::Reset() { frames_tracking = 0; this->hog_desc_median.setTo(cv::Scalar(0)); this->face_image_median.setTo(cv::Scalar(0)); for( size_t i = 0; i < hog_desc_hist.size(); ++i) { this->hog_desc_hist[i] = cv::Mat_(hog_desc_hist[i].rows, hog_desc_hist[i].cols, (int)0); this->hog_hist_sum[i] = 0; this->face_image_hist[i] = cv::Mat_(face_image_hist[i].rows, face_image_hist[i].cols, (int)0); this->face_image_hist_sum[i] = 0; // 0 callibration predictions this->au_prediction_correction_count[i] = 0; this->au_prediction_correction_histogram[i] = cv::Mat_(au_prediction_correction_histogram[i].rows, au_prediction_correction_histogram[i].cols, (int)0); } this->geom_descriptor_median.setTo(cv::Scalar(0)); this->geom_desc_hist = cv::Mat_(geom_desc_hist.rows, geom_desc_hist.cols, (int)0); geom_hist_sum = 0; // Reset the predictions AU_prediction_track = cv::Mat_(AU_prediction_track.rows, AU_prediction_track.cols, 0.0); geom_desc_track = cv::Mat_(geom_desc_track.rows, geom_desc_track.cols, 0.0); dyn_scaling = vector>(dyn_scaling.size(), vector(dyn_scaling[0].size(), 5.0)); AU_predictions_reg.clear(); AU_predictions_class.clear(); AU_predictions_combined.clear(); timestamps.clear(); AU_predictions_reg_all_hist.clear(); AU_predictions_class_all_hist.clear(); valid_preds.clear(); // Clean up the postprocessing data as well hog_desc_frames_init.clear(); geom_descriptor_frames_init.clear(); postprocessed = false; frames_tracking_succ = 0; } void FaceAnalyser::UpdateRunningMedian(cv::Mat_& histogram, int& hist_count, cv::Mat_& median, const cv::Mat_& descriptor, bool update, int num_bins, double min_val, double max_val) { double length = max_val - min_val; if(length < 0) length = -length; // The median update if(histogram.empty()) { histogram = cv::Mat_(descriptor.cols, num_bins, (int)0); median = descriptor.clone(); } if(update) { // Find the bins corresponding to the current descriptor cv::Mat_ converted_descriptor = (descriptor - min_val)*((double)num_bins)/(length); // Capping the top and bottom values converted_descriptor.setTo(cv::Scalar(num_bins-1), converted_descriptor > num_bins - 1); converted_descriptor.setTo(cv::Scalar(0), converted_descriptor < 0); for(int i = 0; i < histogram.rows; ++i) { int index = (int)converted_descriptor.at(i); histogram.at(i, index)++; } // Update the histogram count hist_count++; } if(hist_count == 1) { median = descriptor.clone(); } else { // Recompute the median int cutoff_point = (hist_count + 1)/2; // For each dimension for(int i = 0; i < histogram.rows; ++i) { int cummulative_sum = 0; for(int j = 0; j < histogram.cols; ++j) { cummulative_sum += histogram.at(i, j); if(cummulative_sum >= cutoff_point) { median.at(i) = min_val + ((double)j) * (length/((double)num_bins)) + (0.5*(length)/ ((double)num_bins)); break; } } } } } void FaceAnalyser::ExtractMedian(cv::Mat_& histogram, int hist_count, cv::Mat_& median, int num_bins, double min_val, double max_val) { double length = max_val - min_val; if(length < 0) length = -length; // The median update if(histogram.empty()) { return; } else { if(median.empty()) { median = cv::Mat_(1, histogram.rows, 0.0); } // Compute the median int cutoff_point = (hist_count + 1)/2; // For each dimension for(int i = 0; i < histogram.rows; ++i) { int cummulative_sum = 0; for(int j = 0; j < histogram.cols; ++j) { cummulative_sum += histogram.at(i, j); if(cummulative_sum > cutoff_point) { median.at(i) = min_val + j * (max_val/num_bins) + (0.5*(length)/num_bins); break; } } } } } // Apply the current predictors to the currently stored descriptors vector> FaceAnalyser::PredictCurrentAUs(int view) { vector> predictions; if(!hog_desc_frame.empty()) { vector svr_lin_stat_aus; vector svr_lin_stat_preds; AU_SVR_static_appearance_lin_regressors.Predict(svr_lin_stat_preds, svr_lin_stat_aus, hog_desc_frame, geom_descriptor_frame); for(size_t i = 0; i < svr_lin_stat_preds.size(); ++i) { predictions.push_back(pair(svr_lin_stat_aus[i], svr_lin_stat_preds[i])); } vector svr_lin_dyn_aus; vector svr_lin_dyn_preds; AU_SVR_dynamic_appearance_lin_regressors.Predict(svr_lin_dyn_preds, svr_lin_dyn_aus, hog_desc_frame, geom_descriptor_frame, this->hog_desc_median, this->geom_descriptor_median); for(size_t i = 0; i < svr_lin_dyn_preds.size(); ++i) { predictions.push_back(pair(svr_lin_dyn_aus[i], svr_lin_dyn_preds[i])); } } return predictions; } vector> FaceAnalyser::CorrectOnlineAUs(std::vector> predictions_orig, int view, bool dyn_shift, bool dyn_scale, bool update_track, bool clip_values) { // Correction that drags the predicion to 0 (assuming the bottom 10% of predictions are of neutral expresssions) vector correction(predictions_orig.size(), 0.0); vector> predictions = predictions_orig; if(update_track) { UpdatePredictionTrack(au_prediction_correction_histogram[view], au_prediction_correction_count[view], correction, predictions, 0.10, 200, -3, 5, 10); } if(dyn_shift) { for(size_t i = 0; i < correction.size(); ++i) { predictions[i].second = predictions[i].second - correction[i]; } } if(dyn_scale) { // Some scaling for effect better visualisation // Also makes sense as till the maximum expression is seen, it is hard to tell how expressive a persons face is if(dyn_scaling[view].empty()) { dyn_scaling[view] = vector(predictions.size(), 5.0); } for(size_t i = 0; i < predictions.size(); ++i) { // First establish presence (assume it is maximum as we have not seen max) if(predictions[i].second > 1) { double scaling_curr = 5.0 / predictions[i].second; if(scaling_curr < dyn_scaling[view][i]) { dyn_scaling[view][i] = scaling_curr; } predictions[i].second = predictions[i].second * dyn_scaling[view][i]; } if(predictions[i].second > 5) { predictions[i].second = 5; } } } if(clip_values) { for(size_t i = 0; i < correction.size(); ++i) { if(predictions[i].second < 0) predictions[i].second = 0; if(predictions[i].second > 5) predictions[i].second = 5; } } return predictions; } // Apply the current predictors to the currently stored descriptors (classification) vector> FaceAnalyser::PredictCurrentAUsClass(int view) { vector> predictions; if(!hog_desc_frame.empty()) { vector svm_lin_stat_aus; vector svm_lin_stat_preds; AU_SVM_static_appearance_lin.Predict(svm_lin_stat_preds, svm_lin_stat_aus, hog_desc_frame, geom_descriptor_frame); for(size_t i = 0; i < svm_lin_stat_aus.size(); ++i) { predictions.push_back(pair(svm_lin_stat_aus[i], svm_lin_stat_preds[i])); } vector svm_lin_dyn_aus; vector svm_lin_dyn_preds; AU_SVM_dynamic_appearance_lin.Predict(svm_lin_dyn_preds, svm_lin_dyn_aus, hog_desc_frame, geom_descriptor_frame, this->hog_desc_median, this->geom_descriptor_median); for(size_t i = 0; i < svm_lin_dyn_aus.size(); ++i) { predictions.push_back(pair(svm_lin_dyn_aus[i], svm_lin_dyn_preds[i])); } } return predictions; } vector> FaceAnalyser::GetCurrentAUsClass() const { return AU_predictions_class; } vector> FaceAnalyser::GetCurrentAUsReg() const { return AU_predictions_reg; } vector> FaceAnalyser::GetCurrentAUsCombined() const { return AU_predictions_combined; } void FaceAnalyser::Read(std::string model_loc) { // Reading in the modules for AU recognition cout << "Reading the AU analysis module from: " << model_loc << endl; ifstream locations(model_loc.c_str(), ios_base::in); if (!locations.is_open()) { cout << "Couldn't open the model file, aborting" << endl; return; } string line; // The other module locations should be defined as relative paths from the main model boost::filesystem::path root = boost::filesystem::path(model_loc).parent_path(); // The main file contains the references to other files while (!locations.eof()) { getline(locations, line); stringstream lineStream(line); string module; string location; // figure out which module is to be read from which file lineStream >> module; lineStream >> location; // remove carriage return at the end for compatibility with unix systems if (location.size() > 0 && location.at(location.size() - 1) == '\r') { location = location.substr(0, location.size() - 1); } // append to root location = (root / location).string(); if (module.compare("AUPredictor") == 0) { // The AU predictors cout << "Reading the AU predictors from: " << location; ReadAU(location); cout << "... Done" << endl; } else if (module.compare("PDM") == 0) { cout << "Reading the PDM from: " << location; pdm = PDM(); pdm.Read(location); cout << "... Done" << endl; } else if (module.compare("Triangulation") == 0) { cout << "Reading the triangulation from:" << location; // The triangulation used for masking out the non-face parts of aligned image std::ifstream triangulation_file(location); ReadMat(triangulation_file, triangulation); cout << "... Done" << endl; } } } // Reading in AU prediction modules void FaceAnalyser::ReadAU(std::string au_model_location) { // Open the list of the regressors in the file ifstream locations(au_model_location.c_str(), ios::in); if(!locations.is_open()) { cout << "Couldn't open the AU prediction files at: " << au_model_location.c_str() << " aborting" << endl; cout.flush(); return; } string line; // The other module locations should be defined as relative paths from the main model boost::filesystem::path root = boost::filesystem::path(au_model_location).parent_path(); // The main file contains the references to other files while (!locations.eof()) { getline(locations, line); stringstream lineStream(line); string name; string location; // figure out which module is to be read from which file lineStream >> location; // Parse comma separated names that this regressor produces name = lineStream.str(); int index = (int)name.find_first_of(' '); if(index >= 0) { name = name.substr(index+1); // remove carriage return at the end for compatibility with unix systems name.erase(name.find_last_not_of(" \n\r\t") + 1); } vector au_names; boost::split(au_names, name, boost::is_any_of(",")); // append the lovstion to root location (boost syntax) location = (root / location).string(); ReadRegressor(location, au_names); } } void FaceAnalyser::UpdatePredictionTrack(cv::Mat_& prediction_corr_histogram, int& prediction_correction_count, vector& correction, const vector>& predictions, double ratio, int num_bins, double min_val, double max_val, int min_frames) { double length = max_val - min_val; if(length < 0) length = -length; correction.resize(predictions.size(), 0); // The median update if(prediction_corr_histogram.empty()) { prediction_corr_histogram = cv::Mat_((int)predictions.size(), num_bins, (int)0); } for(int i = 0; i < prediction_corr_histogram.rows; ++i) { // Find the bins corresponding to the current descriptor int index = (int)((predictions[i].second - min_val)*((double)num_bins)/(length)); if(index < 0) { index = 0; } else if(index > num_bins - 1) { index = num_bins - 1; } prediction_corr_histogram.at(i, index)++; } // Update the histogram count prediction_correction_count++; if(prediction_correction_count >= min_frames) { // Recompute the correction int cutoff_point = (int)(ratio * prediction_correction_count); // For each dimension for(int i = 0; i < prediction_corr_histogram.rows; ++i) { int cummulative_sum = 0; for(int j = 0; j < prediction_corr_histogram.cols; ++j) { cummulative_sum += prediction_corr_histogram.at(i, j); if(cummulative_sum > cutoff_point) { double corr = min_val + j * (length/num_bins); correction[i] = corr; break; } } } } } void FaceAnalyser::GetSampleHist(cv::Mat_& prediction_corr_histogram, int prediction_correction_count, vector& sample, double ratio, int num_bins, double min_val, double max_val) { double length = max_val - min_val; if(length < 0) length = -length; sample.resize(prediction_corr_histogram.rows, 0); // Recompute the correction int cutoff_point = (int)(ratio * prediction_correction_count); // For each dimension for(int i = 0; i < prediction_corr_histogram.rows; ++i) { int cummulative_sum = 0; for(int j = 0; j < prediction_corr_histogram.cols; ++j) { cummulative_sum += prediction_corr_histogram.at(i, j); if(cummulative_sum > cutoff_point) { double corr = min_val + j * (length/num_bins); sample[i] = corr; break; } } } } void FaceAnalyser::ReadRegressor(std::string fname, const vector& au_names) { ifstream regressor_stream(fname.c_str(), ios::in | ios::binary); // First read the input type int regressor_type; regressor_stream.read((char*)®ressor_type, 4); if(regressor_type == SVR_appearance_static_linear) { AU_SVR_static_appearance_lin_regressors.Read(regressor_stream, au_names); } else if(regressor_type == SVR_appearance_dynamic_linear) { AU_SVR_dynamic_appearance_lin_regressors.Read(regressor_stream, au_names); } else if(regressor_type == SVM_linear_stat) { AU_SVM_static_appearance_lin.Read(regressor_stream, au_names); } else if(regressor_type == SVM_linear_dyn) { AU_SVM_dynamic_appearance_lin.Read(regressor_stream, au_names); } } double FaceAnalyser::GetCurrentTimeSeconds() { return current_time_seconds; } // Allows for post processing of the AU signal void FaceAnalyser::PostprocessOutputFile(string output_file) { vector certainties; vector successes; vector timestamps; vector>> predictions_reg; vector>> predictions_class; // Construct the new values to overwrite the output file with ExtractAllPredictionsOfflineReg(predictions_reg, certainties, successes, timestamps, dynamic); ExtractAllPredictionsOfflineClass(predictions_class, certainties, successes, timestamps, dynamic); int num_class = (int)predictions_class.size(); int num_reg = (int)predictions_reg.size(); // Extract the indices of writing out first vector au_reg_names = GetAURegNames(); std::sort(au_reg_names.begin(), au_reg_names.end()); vector inds_reg; // write out ar the correct index for (string au_name : au_reg_names) { for (int i = 0; i < num_reg; ++i) { if (au_name.compare(predictions_reg[i].first) == 0) { inds_reg.push_back(i); break; } } } vector au_class_names = GetAUClassNames(); std::sort(au_class_names.begin(), au_class_names.end()); vector inds_class; // write out ar the correct index for (string au_name : au_class_names) { for (int i = 0; i < num_class; ++i) { if (au_name.compare(predictions_class[i].first) == 0) { inds_class.push_back(i); break; } } } // Read all of the output file in vector output_file_contents; std::ifstream infile(output_file); string line; while (std::getline(infile, line)) output_file_contents.push_back(line); infile.close(); // Read the header and find all _r and _c parts in a file and use their indices std::vector tokens; boost::split(tokens, output_file_contents[0], boost::is_any_of(",")); int begin_ind = -1; for (size_t i = 0; i < tokens.size(); ++i) { if (tokens[i].find("AU") != string::npos && begin_ind == -1) { begin_ind = (int)i; break; } } int end_ind = begin_ind + num_class + num_reg; // Now overwrite the whole file std::ofstream outfile(output_file, ios_base::out); // Write the header outfile << std::setprecision(2); outfile << std::fixed; outfile << std::noshowpoint; outfile << output_file_contents[0].c_str() << endl; // Write the contents for (int i = 1; i < (int)output_file_contents.size(); ++i) { std::vector tokens; boost::split(tokens, output_file_contents[i], boost::is_any_of(",")); boost::trim(tokens[0]); outfile << tokens[0]; for (int t = 1; t < (int)tokens.size(); ++t) { if (t >= begin_ind && t < end_ind) { if (t - begin_ind < num_reg) { outfile << ", " << predictions_reg[inds_reg[t - begin_ind]].second[i - 1]; } else { outfile << ", " << predictions_class[inds_class[t - begin_ind - num_reg]].second[i - 1]; } } else { boost::trim(tokens[t]); outfile << ", " << tokens[t]; } } outfile << endl; } }