/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "CCNF_patch_expert.h" // OpenCV includes #include #include // Local includes #include "LandmarkDetectorUtils.h" using namespace LandmarkDetector; // Copy constructors of neuron and patch expert CCNF_neuron::CCNF_neuron(const CCNF_neuron& other) : weights(other.weights.clone()) { this->neuron_type = other.neuron_type; this->norm_weights = other.norm_weights; this->bias = other.bias; this->alpha = other.alpha; for (std::map >::const_iterator it = other.weights_dfts.begin(); it != other.weights_dfts.end(); it++) { // Make sure the matrix is copied. this->weights_dfts.insert(std::pair(it->first, it->second.clone())); } } // Copy constructor CCNF_patch_expert::CCNF_patch_expert(const CCNF_patch_expert& other) : neurons(other.neurons), window_sizes(other.window_sizes), betas(other.betas) { this->width = other.width; this->height = other.height; this->patch_confidence = other.patch_confidence; // Copy the Sigmas in a deep way for (std::vector >::const_iterator it = other.Sigmas.begin(); it != other.Sigmas.end(); it++) { // Make sure the matrix is copied. this->Sigmas.push_back(it->clone()); } } // Compute sigmas for all landmarks for a particular view and window size void CCNF_patch_expert::ComputeSigmas(std::vector > sigma_components, int window_size) { for(size_t i=0; i < window_sizes.size(); ++i) { if( window_sizes[i] == window_size) return; } // Each of the landmarks will have the same connections, hence constant number of sigma components int n_betas = sigma_components.size(); // calculate the sigmas based on alphas and betas float sum_alphas = 0; int n_alphas = this->neurons.size(); // sum the alphas first for(int a = 0; a < n_alphas; ++a) { sum_alphas = sum_alphas + this->neurons[a].alpha; } cv::Mat_ q1 = sum_alphas * cv::Mat_::eye(window_size*window_size, window_size*window_size); cv::Mat_ q2 = cv::Mat_::zeros(window_size*window_size, window_size*window_size); for (int b=0; b < n_betas; ++b) { q2 = q2 + ((float)this->betas[b]) * sigma_components[b]; } cv::Mat_ SigmaInv = 2 * (q1 + q2); cv::Mat Sigma_f; cv::invert(SigmaInv, Sigma_f, cv::DECOMP_CHOLESKY); window_sizes.push_back(window_size); Sigmas.push_back(Sigma_f); } //=========================================================================== void CCNF_neuron::Read(ifstream &stream) { // Sanity check int read_type; stream.read ((char*)&read_type, 4); assert(read_type == 2); stream.read ((char*)&neuron_type, 4); stream.read ((char*)&norm_weights, 8); stream.read ((char*)&bias, 8); stream.read ((char*)&alpha, 8); LandmarkDetector::ReadMatBin(stream, weights); } //=========================================================================== void CCNF_neuron::Response(cv::Mat_ &im, cv::Mat_ &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_ &resp) { int h = im.rows - weights.rows + 1; int w = im.cols - weights.cols + 1; // the patch area on which we will calculate reponses cv::Mat_ I; if(neuron_type == 3) { // Perform normalisation across whole patch (ignoring the invalid values indicated by <= 0 cv::Scalar mean; cv::Scalar std; // ignore missing values cv::Mat_ mask = im > 0; cv::meanStdDev(im, mean, std, mask); // if all values the same don't divide by 0 if(std[0] != 0) { I = (im - mean[0]) / std[0]; } else { I = (im - mean[0]); } I.setTo(0, mask == 0); } else { if(neuron_type == 0) { I = im; } else { printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__,neuron_type); abort(); } } if(resp.empty()) { resp.create(h, w); } // The response from neuron before activation if(neuron_type == 3) { // In case of depth we use per area, rather than per patch normalisation matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF); // the linear multiplication, efficient calc of response } else { matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF_NORMED); // the linear multiplication, efficient calc of response } cv::MatIterator_ p = resp.begin(); cv::MatIterator_ q1 = resp.begin(); // respone for each pixel cv::MatIterator_ q2 = resp.end(); // the logistic function (sigmoid) applied to the response while(q1 != q2) { *p++ = (2 * alpha) * 1.0 /(1.0 + exp( -(*q1++ * norm_weights + bias ))); } } //=========================================================================== void CCNF_patch_expert::Read(ifstream &stream, std::vector window_sizes, std::vector > > sigma_components) { // Sanity check int read_type; stream.read ((char*)&read_type, 4); assert(read_type == 5); // the number of neurons for this patch int num_neurons; stream.read ((char*)&width, 4); stream.read ((char*)&height, 4); stream.read ((char*)&num_neurons, 4); if(num_neurons == 0) { // empty patch due to landmark being invisible at that orientation // read an empty int (due to the way things were written out) stream.read ((char*)&num_neurons, 4); return; } neurons.resize(num_neurons); for(int i = 0; i < num_neurons; i++) neurons[i].Read(stream); int n_sigmas = window_sizes.size(); int n_betas = 0; if(n_sigmas > 0) { n_betas = sigma_components[0].size(); betas.resize(n_betas); for (int i=0; i < n_betas; ++i) { stream.read ((char*)&betas[i], 8); } } // Read the patch confidence stream.read ((char*)&patch_confidence, 8); } //=========================================================================== void CCNF_patch_expert::Response(cv::Mat_ &area_of_interest, cv::Mat_ &response) { int response_height = area_of_interest.rows - height + 1; int response_width = area_of_interest.cols - width + 1; if(response.rows != response_height || response.cols != response_width) { response.create(response_height, response_width); } response.setTo(0); // the placeholder for the DFT of the image, the integral image, and squared integral image so they don't get recalculated for every response cv::Mat_ area_of_interest_dft; cv::Mat integral_image, integral_image_sq; cv::Mat_ neuron_response; // responses from the neural layers for(size_t i = 0; i < neurons.size(); i++) { // Do not bother with neuron response if the alpha is tiny and will not contribute much to overall result if(neurons[i].alpha > 1e-4) { neurons[i].Response(area_of_interest, area_of_interest_dft, integral_image, integral_image_sq, neuron_response); response = response + neuron_response; } } int s_to_use = -1; // Find the matching sigma for(size_t i=0; i < window_sizes.size(); ++i) { if(window_sizes[i] == response_height) { // Found the correct sigma s_to_use = i; break; } } cv::Mat_ resp_vec_f = response.reshape(1, response_height * response_width); cv::Mat out = Sigmas[s_to_use] * resp_vec_f; response = out.reshape(1, response_height); // Making sure the response does not have negative numbers double min; minMaxIdx(response, &min, 0); if(min < 0) { response = response - min; } }