/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #ifndef __CCNF_PATCH_EXPERT_h_ #define __CCNF_PATCH_EXPERT_h_ #include #include #include namespace LandmarkDetector { //=========================================================================== /** A single Neuron response */ class CCNF_neuron{ public: // Type of patch (0=raw,1=grad,3=depth, other types besides raw are not actually used now) int neuron_type; // scaling of weights (needed as the energy of neuron might not be 1) double norm_weights; // Weight bias double bias; // Neural weights cv::Mat_ weights; // can have neural weight dfts that are calculated on the go as needed, this allows us not to recompute // the dft of the template each time, improving the speed of tracking std::map > weights_dfts; // the alpha associated with the neuron double alpha; // Default constructor CCNF_neuron(){;} // Copy constructor CCNF_neuron(const CCNF_neuron& other); void Read(std::ifstream &stream); // The im_dft, integral_img, and integral_img_sq are precomputed images for convolution speedups (they get set if passed in empty values) void Response(cv::Mat_ &im, cv::Mat_ &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_ &resp); }; //=========================================================================== /** A CCNF patch expert */ class CCNF_patch_expert{ public: // Width and height of the patch expert support region int width; int height; // Collection of neurons for this patch expert std::vector neurons; // Information about the vertex features (association potentials) std::vector window_sizes; std::vector > Sigmas; std::vector betas; // How confident we are in the patch double patch_confidence; // Default constructor CCNF_patch_expert(){;} // Copy constructor CCNF_patch_expert(const CCNF_patch_expert& other); void Read(std::ifstream &stream, std::vector window_sizes, std::vector > > sigma_components); // actual work (can pass in an image and a potential depth image, if the CCNF is trained with depth) void Response(cv::Mat_ &area_of_interest, cv::Mat_ &response); // Helper function to compute relevant sigmas void ComputeSigmas(std::vector > sigma_components, int window_size); }; //=========================================================================== } #endif