/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// // FaceTrackingVidMulti.cpp : Defines the entry point for the multiple face tracking console application. #include "LandmarkCoreIncludes.h" #include #include // OpenCV includes #include // Video write #include // Video write #include #include #define INFO_STREAM( stream ) \ std::cout << stream << std::endl #define WARN_STREAM( stream ) \ std::cout << "Warning: " << stream << std::endl #define ERROR_STREAM( stream ) \ std::cout << "Error: " << stream << std::endl static void printErrorAndAbort( const std::string & error ) { std::cout << error << std::endl; abort(); } #define FATAL_STREAM( stream ) \ printErrorAndAbort( std::string( "Fatal error: " ) + stream ) using namespace std; vector get_arguments(int argc, char **argv) { vector arguments; for(int i = 0; i < argc; ++i) { arguments.push_back(string(argv[i])); } return arguments; } void NonOverlapingDetections(const vector& clnf_models, vector >& face_detections) { // Go over the model and eliminate detections that are not informative (there already is a tracker there) for(size_t model = 0; model < clnf_models.size(); ++model) { // See if the detections intersect cv::Rect_ model_rect = clnf_models[model].GetBoundingBox(); for(int detection = face_detections.size()-1; detection >=0; --detection) { double intersection_area = (model_rect & face_detections[detection]).area(); double union_area = model_rect.area() + face_detections[detection].area() - 2 * intersection_area; // If the model is already tracking what we're detecting ignore the detection, this is determined by amount of overlap if( intersection_area/union_area > 0.5) { face_detections.erase(face_detections.begin() + detection); } } } } int main (int argc, char **argv) { vector arguments = get_arguments(argc, argv); // Some initial parameters that can be overriden from command line vector files, depth_directories, tracked_videos_output, dummy_out; // By default try webcam 0 int device = 0; // cx and cy aren't necessarilly in the image center, so need to be able to override it (start with unit vals and init them if none specified) float fx = 600, fy = 600, cx = 0, cy = 0; LandmarkDetector::FaceModelParameters det_params(arguments); det_params.use_face_template = true; // This is so that the model would not try re-initialising itself det_params.reinit_video_every = -1; det_params.curr_face_detector = LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR; vector det_parameters; det_parameters.push_back(det_params); // Get the input output file parameters bool u; string output_codec; LandmarkDetector::get_video_input_output_params(files, depth_directories, dummy_out, tracked_videos_output, u, output_codec, arguments); // Get camera parameters LandmarkDetector::get_camera_params(device, fx, fy, cx, cy, arguments); // The modules that are being used for tracking vector clnf_models; vector active_models; int num_faces_max = 4; LandmarkDetector::CLNF clnf_model(det_parameters[0].model_location); clnf_model.face_detector_HAAR.load(det_parameters[0].face_detector_location); clnf_model.face_detector_location = det_parameters[0].face_detector_location; clnf_models.reserve(num_faces_max); clnf_models.push_back(clnf_model); active_models.push_back(false); for (int i = 1; i < num_faces_max; ++i) { clnf_models.push_back(clnf_model); active_models.push_back(false); det_parameters.push_back(det_params); } // If multiple video files are tracked, use this to indicate if we are done bool done = false; int f_n = -1; // If cx (optical axis centre) is undefined will use the image size/2 as an estimate bool cx_undefined = false; if(cx == 0 || cy == 0) { cx_undefined = true; } while(!done) // this is not a for loop as we might also be reading from a webcam { string current_file; // We might specify multiple video files as arguments if(files.size() > 0) { f_n++; current_file = files[f_n]; } bool use_depth = !depth_directories.empty(); // Do some grabbing cv::VideoCapture video_capture; if( current_file.size() > 0 ) { INFO_STREAM( "Attempting to read from file: " << current_file ); video_capture = cv::VideoCapture( current_file ); } else { INFO_STREAM( "Attempting to capture from device: " << device ); video_capture = cv::VideoCapture( device ); // Read a first frame often empty in camera cv::Mat captured_image; video_capture >> captured_image; } if (!video_capture.isOpened()) { FATAL_STREAM("Failed to open video source"); return 1; } else INFO_STREAM( "Device or file opened"); cv::Mat captured_image; video_capture >> captured_image; // If optical centers are not defined just use center of image if(cx_undefined) { cx = captured_image.cols / 2.0f; cy = captured_image.rows / 2.0f; } int frame_count = 0; // saving the videos cv::VideoWriter writerFace; if(!tracked_videos_output.empty()) { try { writerFace = cv::VideoWriter(tracked_videos_output[f_n], CV_FOURCC(output_codec[0],output_codec[1],output_codec[2],output_codec[3]), 30, captured_image.size(), true); } catch(cv::Exception e) { WARN_STREAM( "Could not open VideoWriter, OUTPUT FILE WILL NOT BE WRITTEN. Currently using codec " << output_codec << ", try using an other one (-oc option)"); } } // For measuring the timings int64 t1,t0 = cv::getTickCount(); double fps = 10; INFO_STREAM( "Starting tracking"); while(!captured_image.empty()) { // Reading the images cv::Mat_ depth_image; cv::Mat_ grayscale_image; cv::Mat disp_image = captured_image.clone(); if(captured_image.channels() == 3) { cv::cvtColor(captured_image, grayscale_image, CV_BGR2GRAY); } else { grayscale_image = captured_image.clone(); } // Get depth image if(use_depth) { char* dst = new char[100]; std::stringstream sstream; sstream << depth_directories[f_n] << "\\depth%05d.png"; sprintf(dst, sstream.str().c_str(), frame_count + 1); // Reading in 16-bit png image representing depth cv::Mat_ depth_image_16_bit = cv::imread(string(dst), -1); // Convert to a floating point depth image if(!depth_image_16_bit.empty()) { depth_image_16_bit.convertTo(depth_image, CV_32F); } else { WARN_STREAM( "Can't find depth image" ); } } vector > face_detections; bool all_models_active = true; for(unsigned int model = 0; model < clnf_models.size(); ++model) { if(!active_models[model]) { all_models_active = false; } } // Get the detections (every 8th frame and when there are free models available for tracking) if(frame_count % 8 == 0 && !all_models_active) { if(det_parameters[0].curr_face_detector == LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR) { vector confidences; LandmarkDetector::DetectFacesHOG(face_detections, grayscale_image, clnf_models[0].face_detector_HOG, confidences); } else { LandmarkDetector::DetectFaces(face_detections, grayscale_image, clnf_models[0].face_detector_HAAR); } } // Keep only non overlapping detections (also convert to a concurrent vector NonOverlapingDetections(clnf_models, face_detections); vector > face_detections_used(face_detections.size()); // Go through every model and update the tracking tbb::parallel_for(0, (int)clnf_models.size(), [&](int model){ //for(unsigned int model = 0; model < clnf_models.size(); ++model) //{ bool detection_success = false; // If the current model has failed more than 4 times in a row, remove it if(clnf_models[model].failures_in_a_row > 4) { active_models[model] = false; clnf_models[model].Reset(); } // If the model is inactive reactivate it with new detections if(!active_models[model]) { for(size_t detection_ind = 0; detection_ind < face_detections.size(); ++detection_ind) { // if it was not taken by another tracker take it (if it is false swap it to true and enter detection, this makes it parallel safe) if(face_detections_used[detection_ind].compare_and_swap(true, false) == false) { // Reinitialise the model clnf_models[model].Reset(); // This ensures that a wider window is used for the initial landmark localisation clnf_models[model].detection_success = false; detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, depth_image, face_detections[detection_ind], clnf_models[model], det_parameters[model]); // This activates the model active_models[model] = true; // break out of the loop as the tracker has been reinitialised break; } } } else { // The actual facial landmark detection / tracking detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, depth_image, clnf_models[model], det_parameters[model]); } }); // Go through every model and visualise the results for(size_t model = 0; model < clnf_models.size(); ++model) { // Visualising the results // Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised double detection_certainty = clnf_models[model].detection_certainty; double visualisation_boundary = -0.1; // Only draw if the reliability is reasonable, the value is slightly ad-hoc if(detection_certainty < visualisation_boundary) { LandmarkDetector::Draw(disp_image, clnf_models[model]); if(detection_certainty > 1) detection_certainty = 1; if(detection_certainty < -1) detection_certainty = -1; detection_certainty = (detection_certainty + 1)/(visualisation_boundary +1); // A rough heuristic for box around the face width int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0); // Work out the pose of the head from the tracked model cv::Vec6d pose_estimate = LandmarkDetector::GetCorrectedPoseWorld(clnf_models[model], fx, fy, cx, cy); // Draw it in reddish if uncertain, blueish if certain LandmarkDetector::DrawBox(disp_image, pose_estimate, cv::Scalar((1-detection_certainty)*255.0,0, detection_certainty*255), thickness, fx, fy, cx, cy); } } // Work out the framerate if(frame_count % 10 == 0) { t1 = cv::getTickCount(); fps = 10.0 / (double(t1-t0)/cv::getTickFrequency()); t0 = t1; } // Write out the framerate on the image before displaying it char fpsC[255]; sprintf(fpsC, "%d", (int)fps); string fpsSt("FPS:"); fpsSt += fpsC; cv::putText(disp_image, fpsSt, cv::Point(10,20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255,0,0), 1, CV_AA); int num_active_models = 0; for( size_t active_model = 0; active_model < active_models.size(); active_model++) { if(active_models[active_model]) { num_active_models++; } } char active_m_C[255]; sprintf(active_m_C, "%d", num_active_models); string active_models_st("Active models:"); active_models_st += active_m_C; cv::putText(disp_image, active_models_st, cv::Point(10,60), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255,0,0), 1, CV_AA); if(!det_parameters[0].quiet_mode) { cv::namedWindow("tracking_result",1); cv::imshow("tracking_result", disp_image); if(!depth_image.empty()) { // Division needed for visualisation purposes imshow("depth", depth_image/2000.0); } } // output the tracked video if(!tracked_videos_output.empty()) { writerFace << disp_image; } video_capture >> captured_image; // detect key presses char character_press = cv::waitKey(1); // restart the trackers if(character_press == 'r') { for(size_t i=0; i < clnf_models.size(); ++i) { clnf_models[i].Reset(); active_models[i] = false; } } // quit the application else if(character_press=='q') { return(0); } // Update the frame count frame_count++; } frame_count = 0; // Reset the model, for the next video for(size_t model=0; model < clnf_models.size(); ++model) { clnf_models[model].Reset(); active_models[model] = false; } // break out of the loop if done with all the files if(f_n == files.size() -1) { done = true; } } return 0; }