% Random Shapes Demo % % Copyright (c) by Lorenzo Torresani, Stanford University % % A demo of Non-Rigid Structure From Motion on artificial random % shapes. % % % The 3D reconstruction technique is based on the following paper: % % Lorenzo Torresani, Aaron Hertzmann and Christoph Bregler, % Learning Non-Rigid 3D Shape from 2D Motion, NIPS 16, 2003 % http://cs.stanford.edu/~ltorresa/projects/learning-nr-shape/ % % % Function em_sfm implements the algorithm "EM-Gaussian" and "EM-LDS" described % in the paper % % I recommend that you try to compile the CMEX code for the function computeH: % type 'mex computeH.c' in the Matlab Command Window ('mex computeH.c -l matlb' under Unix) % T = 100; % number of frames J = 60; % number of points K = 5; % number of deformation shapes state = 1000; % random generator state % generates a random sequence of non-rigid 3D motion according to % the deformation model described by Eq (2) and (3) [P3_gt, S_bar_gt, V_gt, Z_gt, RO_gt, Tr_gt] = random_nr_motion(T, J, K, state); % 2D motion resulting from orthographic projection (Eq (1)) p2_obs = P3_gt(1:2*T, :); % removes 40% of the data missingdata_rate = 0.4; if missingdata_rate>0, rp = randperm(T*J); ind_md = rp(1:round(T*J*missingdata_rate)); MD = zeros(T, J); MD(ind_md) = 1; [i_md, j_md] = ind2sub([T J], ind_md); p2_obs(sub2ind([2*T J], [i_md i_md+T], [j_md j_md])) = 0; % set to 0 the values corresponding to missing data else MD = zeros(T, J); end % runs the non-rigid structure from motion algorithm with different number of deformation shapes max_em_iter = 50; use_lds = 0; % doesn't use LDS since the data was generated at random, w/o temporal smoothness tol = 0.001; k_values = [K-1:K+1]; Zcoords_gt = P3_gt(2*T+1:3*T,:) - mean(P3_gt(2*T+1:3*T,:),2)*ones(1,J); Zdist = max(Zcoords_gt,[],2) - min(Zcoords_gt,[],2); % size of the 3D shape along the Z axis for each time frame ze = []; fprintf('3D reconstruction with %f missing data...\n', missingdata_rate*100); for kk=k_values, [P3, S_hat, V, RO, Tr, Z] = em_sfm(p2_obs, MD, kk, use_lds, tol, max_em_iter); % Compares it with ground truth. % Note that there are still 2 ambiguities that cannot be resolved: % 1. depth direction (i.e. the shape could be "flipped" along the Z axis) -> we test both possibilities % 2. Z translation -> we subtract the mean of the Z coords to evaluate reconstruction results Zcoords_em = P3(2*T+1:3*T,:) - mean(P3(2*T+1:3*T,:),2)*ones(1,J); Zerror1 = mean( mean(abs(Zcoords_em - Zcoords_gt), 2)./Zdist ); Zerror2 = mean( mean(abs(-Zcoords_em - Zcoords_gt), 2)./Zdist ); avg_zerror = 100*min(Zerror1, Zerror2); ze = [ze avg_zerror]; hold off; plot(k_values(1:length(ze)), ze, '-o'); title(['3D reconstruction with ' num2str(missingdata_rate*100) '% missing data'], 'fontweight', 'bold'); xlabel('K (number of deformation shapes)'); ylabel('% Z error'); grid on; drawnow; end