% Shark Demo % % Copyright (c) by Lorenzo Torresani, Stanford University % % A demo of Non-Rigid Structure From Motion on artificial shark sequence % % % The 3D reconstruction technique is based on the following paper: % % Lorenzo Torresani, Aaron Hertzmann and Christoph Bregler, % Learning Non-Rigid 3D Shape from 2D Motion, NIPS 16, 2003 % http://cs.stanford.edu/~ltorresa/projects/learning-nr-shape/ % % % Function em_sfm implements the algorithms "EM-Gaussian" and "EM-LDS" described % in the paper % % I recommend that you try to compile the CMEX code for the function computeH: % type 'mex computeH.c' in the Matlab Command Window ('mex computeH.c -l matlb' under Unix) % % loads the matrix P3_gt containing the ground thruth data: P3_gt([t t+T t+2*T],:) contains the 3D coordinates of the J points at time t % (T is the number of frames, J is the number of points) load('jaws.mat'); [T, J] = size(P3_gt); T = T/3; % 2D motion resulting from orthographic projection (Eq (1)) p2_obs = P3_gt(1:2*T, :); % runs the non-rigid structure from motion algorithm use_lds = 1; max_em_iter = 60; tol = 0.0001; K = 2; % number of deformation shapes Zcoords_gt = P3_gt(2*T+1:3*T,:) - mean(P3_gt(2*T+1:3*T,:),2)*ones(1,J); Zdist = max(Zcoords_gt,[],2) - min(Zcoords_gt,[],2); % size of the 3D shape along the Z axis for each time frame MD = zeros(T,J); [P3, S_hat, V, RO, Tr, Z] = em_sfm(p2_obs, MD, K, use_lds, tol, max_em_iter); %% Compares it with ground truth. % Note that there are still 2 unresolvable ambiguities: % 1. depth direction (i.e. the shape could be "flipped" along the Z axis) -> we test both possibilities % 2. Z translation -> we subtract the mean of the Z coords to evaluate reconstruction results Zcoords_em = P3(2*T+1:3*T,:) - mean(P3(2*T+1:3*T,:),2)*ones(1,J); Zerror1 = mean( mean(abs(Zcoords_em - Zcoords_gt), 2)./Zdist ); Zerror2 = mean( mean(abs(-Zcoords_em - Zcoords_gt), 2)./Zdist ); if Zerror2 < Zerror1, avg_zerror = 100*Zerror2; P3(2*T+1:3*T,:) = -(P3(2*T+1:3*T,:) - mean(P3(2*T+1:3*T,:),2)*ones(1,J)); else avg_zerror = 100*Zerror1; P3(2*T+1:3*T,:) = P3(2*T+1:3*T,:) - mean(P3(2*T+1:3*T,:),2)*ones(1,J); end fprintf('Average reconstruction error in Z: %f%%\n', avg_zerror); vis_reconstruction(P3_gt, P3);