Video writing bug fix, work on demo scripts for feature extraction.
This commit is contained in:
parent
a70fe65356
commit
d6dd2f9a45
4 changed files with 46 additions and 52 deletions
|
@ -189,7 +189,7 @@ void RecorderOpenFace::SetObservationVisualization(const cv::Mat &vis_track)
|
|||
if (params.outputTracked())
|
||||
{
|
||||
// Initialize the video writer if it has not been opened yet
|
||||
if(video_writer.isOpened())
|
||||
if(params.isSequence())
|
||||
{
|
||||
std::string output_codec = params.outputCodec();
|
||||
try
|
||||
|
|
|
@ -1,50 +1,24 @@
|
|||
% A demo script that demonstrates how to process a single video file using
|
||||
% OpenFace and extract and visualize all of the features
|
||||
|
||||
clear
|
||||
|
||||
% The location executable will depend on the OS
|
||||
if(isunix)
|
||||
executable = '"../../build/bin/FeatureExtraction"';
|
||||
else
|
||||
executable = '"../../x64/Release/FeatureExtraction.exe"';
|
||||
end
|
||||
|
||||
output = './output_features_vid/';
|
||||
% Input file
|
||||
in_file = '../../samples/default.wmv';
|
||||
|
||||
if(~exist(output, 'file'))
|
||||
mkdir(output)
|
||||
end
|
||||
% Where to store the output
|
||||
output_dir = './processed_features/';
|
||||
|
||||
in_files = dir('../../samples/default.wmv');
|
||||
% some parameters
|
||||
verbose = true;
|
||||
|
||||
command = executable;
|
||||
|
||||
% Remove for a speedup
|
||||
command = cat(2, command, ' -verbose ');
|
||||
|
||||
% add all videos to single argument list (so as not to load the model anew
|
||||
% for every video)
|
||||
for i=1:numel(in_files)
|
||||
|
||||
inputFile = ['../../samples/', in_files(i).name];
|
||||
[~, name, ~] = fileparts(inputFile);
|
||||
|
||||
% where to output tracking results
|
||||
outputFile = [output name '.txt'];
|
||||
|
||||
if(~exist([output name], 'file'))
|
||||
mkdir([output name]);
|
||||
end
|
||||
|
||||
outputDir_aligned = [output name];
|
||||
|
||||
outputHOG_aligned = [output name '.hog'];
|
||||
|
||||
output_shape_params = [output name '.params.txt'];
|
||||
|
||||
command = cat(2, command, [' -f "' inputFile '" -of "' outputFile '"']);
|
||||
command = cat(2, command, [' -simalign "' outputDir_aligned '" -hogalign "' outputHOG_aligned '"' ]);
|
||||
|
||||
end
|
||||
% This will take file after -f and output all the features to directory
|
||||
% after -out_dir
|
||||
command = sprintf('%s -f "%s" -out_dir "%s" -verbose', executable, in_file, output_dir);
|
||||
|
||||
if(isunix)
|
||||
unix(command);
|
||||
|
@ -54,15 +28,30 @@ end
|
|||
|
||||
%% Demonstrating reading the output files
|
||||
|
||||
% First read in the column names
|
||||
tab = readtable(outputFile);
|
||||
% Most of the features will be in the csv file in the output directory with
|
||||
% the same name as the input file
|
||||
[~,name,~] = fileparts(in_file);
|
||||
output_csv = sprintf('%s/%s.csv', output_dir, name);
|
||||
|
||||
% First read in the column names, to know which columns to read for
|
||||
% particular features
|
||||
tab = readtable(output_csv);
|
||||
column_names = tab.Properties.VariableNames;
|
||||
|
||||
all_params = dlmread(outputFile, ',', 1, 0);
|
||||
% Read all of the data
|
||||
all_params = dlmread(output_csv, ',', 1, 0);
|
||||
|
||||
% This indicates which frames were succesfully tracked
|
||||
valid_frames = logical(all_params(:,4));
|
||||
time = all_params(valid_frames, 2);
|
||||
|
||||
% Find which column contains success of tracking data and timestamp data
|
||||
valid_ind = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'success'));
|
||||
time_stamp_ind = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'timestamp'));
|
||||
|
||||
% Extract tracking success data and only read those frame
|
||||
valid_frames = logical(all_params(:,valid_ind));
|
||||
|
||||
% Get the timestamp data
|
||||
time_stamps = all_params(valid_frames, time_stamp_ind);
|
||||
|
||||
%% Finding which header line starts with p_ (basically model params)
|
||||
shape_inds = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'p_'));
|
||||
|
@ -71,7 +60,7 @@ shape_inds = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'p_'));
|
|||
shape_params = all_params(valid_frames, shape_inds);
|
||||
|
||||
figure
|
||||
plot(time, shape_params);
|
||||
plot(time_stamps, shape_params);
|
||||
title('Shape parameters');
|
||||
xlabel('Time (s)');
|
||||
|
||||
|
@ -113,9 +102,20 @@ xs = all_params(valid_frames, landmark_inds_x);
|
|||
ys = all_params(valid_frames, landmark_inds_y);
|
||||
zs = all_params(valid_frames, landmark_inds_z);
|
||||
|
||||
eye_landmark_inds_x = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_X_'));
|
||||
eye_landmark_inds_y = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_Y_'));
|
||||
eye_landmark_inds_z = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_Z_'));
|
||||
|
||||
eye_xs = all_params(valid_frames, eye_landmark_inds_x);
|
||||
eye_ys = all_params(valid_frames, eye_landmark_inds_y);
|
||||
eye_zs = all_params(valid_frames, eye_landmark_inds_z);
|
||||
|
||||
figure
|
||||
for j = 1:size(xs,1)
|
||||
plot3(xs(j,:), ys(j,:), zs(j,:), '.');axis equal;
|
||||
hold on;
|
||||
plot3(eye_xs(j,:), eye_ys(j,:), eye_zs(j,:), '.r');
|
||||
hold off;
|
||||
xlabel('X (mm)');
|
||||
ylabel('Y (mm)');
|
||||
zlabel('Z (mm)');
|
||||
|
|
|
@ -8,12 +8,6 @@ else
|
|||
executable = '"../../x64/Release/FaceLandmarkVidMulti.exe"';
|
||||
end
|
||||
|
||||
output = './demo_vid/';
|
||||
|
||||
if(~exist(output, 'file'))
|
||||
mkdir(output)
|
||||
end
|
||||
|
||||
in_files = dir('../../samples/multi_face.avi');
|
||||
|
||||
model = 'model/main_clnf_general.txt'; % Trained on in the wild and multi-pie data (a CLNF model)
|
||||
|
|
|
@ -22,8 +22,8 @@ model = 'model/main_clnf_general.txt'; % Trained on in the wild and multi-pie da
|
|||
% Create a command that will run the tracker on set of videos and display the output
|
||||
command = sprintf('%s -mloc "%s" ', executable, model);
|
||||
|
||||
% add all videos to single argument list (so as not to load the model anew
|
||||
% for every video)
|
||||
% add all videos to single argument list by appending -f comments
|
||||
% so as not to load the model anew for every video)
|
||||
for i=1:numel(in_files)
|
||||
inputFile = ['../../samples/', in_files(i).name];
|
||||
command = cat(2, command, [' -f "' inputFile '" ']);
|
||||
|
|
Loading…
Reference in a new issue