Some work on demo scripts and according bug fixes
This commit is contained in:
parent
d6dd2f9a45
commit
412cf4ff04
5 changed files with 133 additions and 50 deletions
|
@ -44,8 +44,14 @@ RecorderOpenFaceParameters::RecorderOpenFaceParameters(std::vector<std::string>
|
|||
|
||||
this->is_sequence = sequence;
|
||||
|
||||
this->fps_vid_out = fps_vid_out;
|
||||
|
||||
if(fps_vid_out > 0)
|
||||
{
|
||||
this->fps_vid_out = fps_vid_out;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->fps_vid_out = 30; // If an illegal value for fps provided, default to 30
|
||||
}
|
||||
// Default output code
|
||||
this->output_codec = "DIVX";
|
||||
|
||||
|
|
|
@ -403,7 +403,6 @@ void SequenceCapture::SetCameraIntrinsics(float fx, float fy, float cx, float cy
|
|||
|
||||
cv::Mat SequenceCapture::GetNextFrame()
|
||||
{
|
||||
frame_num++;
|
||||
|
||||
if (is_webcam || !is_image_seq)
|
||||
{
|
||||
|
@ -429,19 +428,23 @@ cv::Mat SequenceCapture::GetNextFrame()
|
|||
}
|
||||
else if (is_image_seq)
|
||||
{
|
||||
if (image_files.empty() || frame_num - 1 > image_files.size())
|
||||
if (image_files.empty() || frame_num >= image_files.size())
|
||||
{
|
||||
// Indicate lack of success by returning an empty image
|
||||
latest_frame = cv::Mat();
|
||||
}
|
||||
|
||||
latest_frame = cv::imread(image_files[frame_num-1], -1);
|
||||
else
|
||||
{
|
||||
latest_frame = cv::imread(image_files[frame_num], -1);
|
||||
}
|
||||
time_stamp = 0;
|
||||
}
|
||||
|
||||
// Set the grayscale frame
|
||||
convertToGrayscale(latest_frame, latest_gray_frame);
|
||||
|
||||
frame_num++;
|
||||
|
||||
return latest_frame;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,43 +1,24 @@
|
|||
% A demo script that demonstrates how to process a single video file using
|
||||
% OpenFace and extract and visualize all of the features
|
||||
|
||||
clear
|
||||
|
||||
% The location executable will depend on the OS
|
||||
if(isunix)
|
||||
executable = '"../../build/bin/FeatureExtraction"';
|
||||
else
|
||||
executable = '"../../x64/Release/FeatureExtraction.exe"';
|
||||
end
|
||||
|
||||
output = './output_features_seq/';
|
||||
% Input file
|
||||
in_dir = '../../image_sequence';
|
||||
|
||||
if(~exist(output, 'file'))
|
||||
mkdir(output)
|
||||
end
|
||||
% Where to store the output
|
||||
output_dir = './processed_features/';
|
||||
|
||||
in_dirs = {'../../image_sequence'};
|
||||
% some parameters
|
||||
verbose = true;
|
||||
|
||||
command = executable;
|
||||
|
||||
% Remove for a speedup
|
||||
command = cat(2, command, ' -verbose ');
|
||||
|
||||
% add all videos to single argument list (so as not to load the model anew
|
||||
% for every video)
|
||||
for i=1:numel(in_dirs)
|
||||
|
||||
[~, name, ~] = fileparts(in_dirs{i});
|
||||
|
||||
% where to output tracking results
|
||||
outputFile = [output name '.txt'];
|
||||
outputDir_aligned = [output name];
|
||||
|
||||
outputHOG_aligned = [output name '.hog'];
|
||||
|
||||
command = cat(2, command, ['-asvid -fdir "' in_dirs{i} '" -of "' outputFile '" ']);
|
||||
|
||||
command = cat(2, command, [' -simalign "' outputDir_aligned '" -simsize 200 -hogalign "' outputHOG_aligned '"']);
|
||||
|
||||
end
|
||||
% This will take directory after -fdir and output all the features to directory
|
||||
% after -out_dir
|
||||
command = sprintf('%s -fdir "%s" -out_dir "%s" -verbose', executable, in_dir, output_dir);
|
||||
|
||||
if(isunix)
|
||||
unix(command);
|
||||
|
@ -47,15 +28,30 @@ end
|
|||
|
||||
%% Demonstrating reading the output files
|
||||
|
||||
% First read in the column names
|
||||
tab = readtable(outputFile);
|
||||
% Most of the features will be in the csv file in the output directory with
|
||||
% the same name as the input file
|
||||
[~,name,~] = fileparts(in_file);
|
||||
output_csv = sprintf('%s/%s.csv', output_dir, name);
|
||||
|
||||
% First read in the column names, to know which columns to read for
|
||||
% particular features
|
||||
tab = readtable(output_csv);
|
||||
column_names = tab.Properties.VariableNames;
|
||||
|
||||
all_params = dlmread(outputFile, ',', 1, 0);
|
||||
% Read all of the data
|
||||
all_params = dlmread(output_csv, ',', 1, 0);
|
||||
|
||||
% This indicates which frames were succesfully tracked
|
||||
valid_frames = logical(all_params(:,4));
|
||||
time = all_params(valid_frames, 2);
|
||||
|
||||
% Find which column contains success of tracking data and timestamp data
|
||||
valid_ind = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'success'));
|
||||
time_stamp_ind = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'timestamp'));
|
||||
|
||||
% Extract tracking success data and only read those frame
|
||||
valid_frames = logical(all_params(:,valid_ind));
|
||||
|
||||
% Get the timestamp data
|
||||
time_stamps = all_params(valid_frames, time_stamp_ind);
|
||||
|
||||
%% Finding which header line starts with p_ (basically model params)
|
||||
shape_inds = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'p_'));
|
||||
|
@ -64,7 +60,7 @@ shape_inds = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'p_'));
|
|||
shape_params = all_params(valid_frames, shape_inds);
|
||||
|
||||
figure
|
||||
plot(time, shape_params);
|
||||
plot(time_stamps, shape_params);
|
||||
title('Shape parameters');
|
||||
xlabel('Time (s)');
|
||||
|
||||
|
@ -75,10 +71,20 @@ landmark_inds_y = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'y_'))
|
|||
xs = all_params(valid_frames, landmark_inds_x);
|
||||
ys = all_params(valid_frames, landmark_inds_y);
|
||||
|
||||
eye_landmark_inds_x = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_x_'));
|
||||
eye_landmark_inds_y = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_y_'));
|
||||
|
||||
eye_xs = all_params(valid_frames, eye_landmark_inds_x);
|
||||
eye_ys = all_params(valid_frames, eye_landmark_inds_y);
|
||||
|
||||
figure
|
||||
|
||||
for j = 1:size(xs,1)
|
||||
plot(xs(j,:), -ys(j,:), '.');
|
||||
hold on;
|
||||
plot(eye_xs(j,:), -eye_ys(j,:), '.r');
|
||||
hold off;
|
||||
|
||||
xlim([min(xs(1,:)) * 0.5, max(xs(2,:))*1.4]);
|
||||
ylim([min(-ys(1,:)) * 1.4, max(-ys(2,:))*0.5]);
|
||||
xlabel('x (px)');
|
||||
|
@ -96,9 +102,20 @@ xs = all_params(valid_frames, landmark_inds_x);
|
|||
ys = all_params(valid_frames, landmark_inds_y);
|
||||
zs = all_params(valid_frames, landmark_inds_z);
|
||||
|
||||
eye_landmark_inds_x = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_X_'));
|
||||
eye_landmark_inds_y = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_Y_'));
|
||||
eye_landmark_inds_z = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'eye_lmk_Z_'));
|
||||
|
||||
eye_xs = all_params(valid_frames, eye_landmark_inds_x);
|
||||
eye_ys = all_params(valid_frames, eye_landmark_inds_y);
|
||||
eye_zs = all_params(valid_frames, eye_landmark_inds_z);
|
||||
|
||||
figure
|
||||
for j = 1:size(xs,1)
|
||||
plot3(xs(j,:), ys(j,:), zs(j,:), '.');axis equal;
|
||||
hold on;
|
||||
plot3(eye_xs(j,:), eye_ys(j,:), eye_zs(j,:), '.r');
|
||||
hold off;
|
||||
xlabel('X (mm)');
|
||||
ylabel('Y (mm)');
|
||||
zlabel('Z (mm)');
|
||||
|
@ -110,7 +127,7 @@ au_reg_inds = cellfun(@(x) ~isempty(x) && x==5, strfind(column_names, '_r'));
|
|||
|
||||
aus = all_params(valid_frames, au_reg_inds);
|
||||
figure
|
||||
plot(aus);
|
||||
plot(time, aus);
|
||||
title('Facial Action Units (intensity)');
|
||||
xlabel('Time (s)');
|
||||
ylabel('Intensity');
|
||||
|
@ -120,7 +137,7 @@ au_class_inds = cellfun(@(x) ~isempty(x) && x==5, strfind(column_names, '_c'));
|
|||
|
||||
aus = all_params(valid_frames, au_class_inds);
|
||||
figure
|
||||
plot(aus);
|
||||
plot(time, aus);
|
||||
title('Facial Action Units (presense)');
|
||||
xlabel('Time (s)');
|
||||
ylim([0,2]);
|
||||
|
@ -133,14 +150,30 @@ plot(pose);
|
|||
title('Pose (rotation and translation)');
|
||||
xlabel('Time (s)');
|
||||
|
||||
%% Demo gaze
|
||||
gaze_inds = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'gaze_angle'));
|
||||
|
||||
% Read gaze (x,y,z) for one eye and (x,y,z) for another
|
||||
gaze = all_params(valid_frames, gaze_inds);
|
||||
|
||||
plot(time, gaze(:,1), 'DisplayName', 'Left - right');
|
||||
hold on;
|
||||
plot(time, gaze(:,2), 'DisplayName', 'Up - down');
|
||||
xlabel('Time(s)') % x-axis label
|
||||
ylabel('Angle radians') % y-axis label
|
||||
legend('show');
|
||||
hold off;
|
||||
|
||||
%% Output HOG files
|
||||
[hog_data, valid_inds] = Read_HOG_file(outputHOG_aligned);
|
||||
output_hog_file = sprintf('%s/%s.hog', output_dir, name);
|
||||
[hog_data, valid_inds] = Read_HOG_file(output_hog_file);
|
||||
|
||||
%% Output aligned images
|
||||
img_files = dir([outputDir_aligned, '/*.png']);
|
||||
output_aligned_dir = sprintf('%s/%s_aligned/', output_dir, name);
|
||||
img_files = dir([output_aligned_dir, '/*.bmp']);
|
||||
imgs = cell(numel(img_files, 1));
|
||||
for i=1:numel(img_files)
|
||||
imgs{i} = imread([ outputDir_aligned, '/', img_files(i).name]);
|
||||
imgs{i} = imread([ output_aligned_dir, '/', img_files(i).name]);
|
||||
imshow(imgs{i})
|
||||
drawnow
|
||||
end
|
|
@ -165,13 +165,15 @@ legend('show');
|
|||
hold off;
|
||||
|
||||
%% Output HOG files
|
||||
[hog_data, valid_inds] = Read_HOG_file(outputHOG_aligned);
|
||||
output_hog_file = sprintf('%s/%s.hog', output_dir, name);
|
||||
[hog_data, valid_inds] = Read_HOG_file(output_hog_file);
|
||||
|
||||
%% Output aligned images
|
||||
img_files = dir([outputDir_aligned, '/*.png']);
|
||||
output_aligned_dir = sprintf('%s/%s_aligned/', output_dir, name);
|
||||
img_files = dir([output_aligned_dir, '/*.bmp']);
|
||||
imgs = cell(numel(img_files, 1));
|
||||
for i=1:numel(img_files)
|
||||
imgs{i} = imread([ outputDir_aligned, '/', img_files(i).name]);
|
||||
imgs{i} = imread([ output_aligned_dir, '/', img_files(i).name]);
|
||||
imshow(imgs{i})
|
||||
drawnow
|
||||
end
|
39
matlab_runners/Demos/run_demo_align_size.m
Normal file
39
matlab_runners/Demos/run_demo_align_size.m
Normal file
|
@ -0,0 +1,39 @@
|
|||
% A demo script that demonstrates how to process a single video file using
|
||||
% OpenFace and extract and visualize all of the features
|
||||
|
||||
clear
|
||||
|
||||
% The location executable will depend on the OS
|
||||
if(isunix)
|
||||
executable = '"../../build/bin/FeatureExtraction"';
|
||||
else
|
||||
executable = '"../../x64/Release/FeatureExtraction.exe"';
|
||||
end
|
||||
|
||||
% Input file
|
||||
in_file = '../../samples/default.wmv';
|
||||
|
||||
% Where to store the output
|
||||
output_dir = './processed_features/';
|
||||
|
||||
img_sizes = [64, 112, 224];
|
||||
|
||||
% This will take file after -f and output all the features to directory
|
||||
% after -out_dir
|
||||
command = sprintf('%s -f "%s" -out_dir "%s" -verbose -simalign', executable, in_file, output_dir);
|
||||
|
||||
if(isunix)
|
||||
unix(command);
|
||||
else
|
||||
dos(command);
|
||||
end
|
||||
|
||||
%% Output aligned images
|
||||
output_aligned_dir = sprintf('%s/%s_aligned/', output_dir, name);
|
||||
img_files = dir([output_aligned_dir, '/*.bmp']);
|
||||
imgs = cell(numel(img_files, 1));
|
||||
for i=1:numel(img_files)
|
||||
imgs{i} = imread([ output_aligned_dir, '/', img_files(i).name]);
|
||||
imshow(imgs{i})
|
||||
drawnow
|
||||
end
|
Loading…
Reference in a new issue