A small fix for linux compilation.

This commit is contained in:
Tadas Baltrusaitis 2017-03-08 14:25:13 -05:00
parent 179afdcabc
commit 1c546298b8
3 changed files with 122 additions and 119 deletions

View file

@ -717,10 +717,10 @@ int main (int argc, char **argv)
output_file.close(); output_file.close();
if(output_files.size() > 0 && output_AUs) if (output_files.size() > 0 && output_AUs)
{ {
cout << "Postprocessing the Action Unit predictions" << endl; cout << "Postprocessing the Action Unit predictions" << endl;
post_process_output_file(face_analyser, output_files[f_n], dynamic); face_analyser.PostprocessOutputFile(output_files[f_n], dynamic);
} }
// Reset the models for the next video // Reset the models for the next video
face_analyser.Reset(); face_analyser.Reset();
@ -744,121 +744,6 @@ int main (int argc, char **argv)
return 0; return 0;
} }
// Allows for post processing of the AU signal
void post_process_output_file(FaceAnalysis::FaceAnalyser& face_analyser, string output_file, bool dynamic)
{
vector<double> certainties;
vector<bool> successes;
vector<double> timestamps;
vector<std::pair<std::string, vector<double>>> predictions_reg;
vector<std::pair<std::string, vector<double>>> predictions_class;
// Construct the new values to overwrite the output file with
face_analyser.ExtractAllPredictionsOfflineReg(predictions_reg, certainties, successes, timestamps, dynamic);
face_analyser.ExtractAllPredictionsOfflineClass(predictions_class, certainties, successes, timestamps, dynamic);
int num_class = predictions_class.size();
int num_reg = predictions_reg.size();
// Extract the indices of writing out first
vector<string> au_reg_names = face_analyser.GetAURegNames();
std::sort(au_reg_names.begin(), au_reg_names.end());
vector<int> inds_reg;
// write out ar the correct index
for (string au_name : au_reg_names)
{
for (int i = 0; i < num_reg; ++i)
{
if (au_name.compare(predictions_reg[i].first) == 0)
{
inds_reg.push_back(i);
break;
}
}
}
vector<string> au_class_names = face_analyser.GetAUClassNames();
std::sort(au_class_names.begin(), au_class_names.end());
vector<int> inds_class;
// write out ar the correct index
for (string au_name : au_class_names)
{
for (int i = 0; i < num_class; ++i)
{
if (au_name.compare(predictions_class[i].first) == 0)
{
inds_class.push_back(i);
break;
}
}
}
// Read all of the output file in
vector<string> output_file_contents;
std::ifstream infile(output_file);
string line;
while (std::getline(infile, line))
output_file_contents.push_back(line);
infile.close();
// Read the header and find all _r and _c parts in a file and use their indices
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[0], boost::is_any_of(","));
int begin_ind = -1;
for (size_t i = 0; i < tokens.size(); ++i)
{
if (tokens[i].find("AU") != string::npos && begin_ind == -1)
{
begin_ind = i;
break;
}
}
int end_ind = begin_ind + num_class + num_reg;
// Now overwrite the whole file
std::ofstream outfile(output_file, ios_base::out);
// Write the header
outfile << output_file_contents[0].c_str() << endl;
// Write the contents
for (int i = 1; i < (int)output_file_contents.size(); ++i)
{
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[i], boost::is_any_of(","));
outfile << tokens[0];
for (int t = 1; t < (int)tokens.size(); ++t)
{
if (t >= begin_ind && t < end_ind)
{
if(t - begin_ind < num_reg)
{
outfile << ", " << predictions_reg[inds_reg[t - begin_ind]].second[i - 1];
}
else
{
outfile << ", " << predictions_class[inds_class[t - begin_ind - num_reg]].second[i - 1];
}
}
else
{
outfile << ", " << tokens[t];
}
}
outfile << endl;
}
}
void prepareOutputFile(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks, void prepareOutputFile(std::ofstream* output_file, bool output_2D_landmarks, bool output_3D_landmarks,
bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze, bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
int num_landmarks, int num_model_modes, vector<string> au_names_class, vector<string> au_names_reg) int num_landmarks, int num_model_modes, vector<string> au_names_class, vector<string> au_names_reg)

View file

@ -127,7 +127,7 @@ namespace FaceAnalysis
void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic); void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
// Helper function for post-processing AU output files // Helper function for post-processing AU output files
void FaceAnalyser::PostprocessOutputFile(string output_file, bool dynamic); void PostprocessOutputFile(string output_file, bool dynamic);
private: private:

View file

@ -1257,4 +1257,122 @@ void FaceAnalyser::ReadRegressor(std::string fname, const vector<string>& au_nam
double FaceAnalyser::GetCurrentTimeSeconds() { double FaceAnalyser::GetCurrentTimeSeconds() {
return current_time_seconds; return current_time_seconds;
} }
// Allows for post processing of the AU signal
void FaceAnalyser::PostprocessOutputFile(string output_file, bool dynamic)
{
vector<double> certainties;
vector<bool> successes;
vector<double> timestamps;
vector<std::pair<std::string, vector<double>>> predictions_reg;
vector<std::pair<std::string, vector<double>>> predictions_class;
// Construct the new values to overwrite the output file with
ExtractAllPredictionsOfflineReg(predictions_reg, certainties, successes, timestamps, dynamic);
ExtractAllPredictionsOfflineClass(predictions_class, certainties, successes, timestamps, dynamic);
int num_class = predictions_class.size();
int num_reg = predictions_reg.size();
// Extract the indices of writing out first
vector<string> au_reg_names = GetAURegNames();
std::sort(au_reg_names.begin(), au_reg_names.end());
vector<int> inds_reg;
// write out ar the correct index
for (string au_name : au_reg_names)
{
for (int i = 0; i < num_reg; ++i)
{
if (au_name.compare(predictions_reg[i].first) == 0)
{
inds_reg.push_back(i);
break;
}
}
}
vector<string> au_class_names = GetAUClassNames();
std::sort(au_class_names.begin(), au_class_names.end());
vector<int> inds_class;
// write out ar the correct index
for (string au_name : au_class_names)
{
for (int i = 0; i < num_class; ++i)
{
if (au_name.compare(predictions_class[i].first) == 0)
{
inds_class.push_back(i);
break;
}
}
}
// Read all of the output file in
vector<string> output_file_contents;
std::ifstream infile(output_file);
string line;
while (std::getline(infile, line))
output_file_contents.push_back(line);
infile.close();
// Read the header and find all _r and _c parts in a file and use their indices
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[0], boost::is_any_of(","));
int begin_ind = -1;
for (size_t i = 0; i < tokens.size(); ++i)
{
if (tokens[i].find("AU") != string::npos && begin_ind == -1)
{
begin_ind = i;
break;
}
}
int end_ind = begin_ind + num_class + num_reg;
// Now overwrite the whole file
std::ofstream outfile(output_file, ios_base::out);
// Write the header
outfile << std::setprecision(4);
outfile << output_file_contents[0].c_str() << endl;
// Write the contents
for (int i = 1; i < (int)output_file_contents.size(); ++i)
{
std::vector<std::string> tokens;
boost::split(tokens, output_file_contents[i], boost::is_any_of(","));
boost::trim(tokens[0]);
outfile << tokens[0];
for (int t = 1; t < (int)tokens.size(); ++t)
{
if (t >= begin_ind && t < end_ind)
{
if (t - begin_ind < num_reg)
{
outfile << ", " << predictions_reg[inds_reg[t - begin_ind]].second[i - 1];
}
else
{
outfile << ", " << predictions_class[inds_class[t - begin_ind - num_reg]].second[i - 1];
}
}
else
{
boost::trim(tokens[t]);
outfile << ", " << tokens[t];
}
}
outfile << endl;
}
}