More work on AU - WIP
This commit is contained in:
parent
65e91da3a6
commit
146dcd5e5b
676 changed files with 2971 additions and 297 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -27,3 +27,4 @@ matlab_runners/Action Unit Experiments/out_SEMAINE/
|
||||||
exe/FeatureExtraction/out_bp4d/
|
exe/FeatureExtraction/out_bp4d/
|
||||||
x64/Debug/
|
x64/Debug/
|
||||||
matlab_runners/Action Unit Experiments/out_unbc/
|
matlab_runners/Action Unit Experiments/out_unbc/
|
||||||
|
matlab_runners/Action Unit Experiments/out_bosph/
|
||||||
|
|
|
@ -188,26 +188,64 @@ void write_out_pose_landmarks(const string& outfeatures, const cv::Mat_<double>&
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void write_out_landmarks(const string& outfeatures, const LandmarkDetector::CLNF& clnf_model)
|
void write_out_landmarks(const string& outfeatures, const LandmarkDetector::CLNF& clnf_model, const cv::Vec6d& pose, const cv::Point3f& gaze0, const cv::Point3f& gaze1, std::vector<std::pair<std::string, double>> au_intensities, std::vector<std::pair<std::string, double>> au_occurences)
|
||||||
{
|
{
|
||||||
create_directory_from_file(outfeatures);
|
create_directory_from_file(outfeatures);
|
||||||
std::ofstream featuresFile;
|
std::ofstream featuresFile;
|
||||||
featuresFile.open(outfeatures);
|
featuresFile.open(outfeatures);
|
||||||
|
|
||||||
if(featuresFile.is_open())
|
if (featuresFile.is_open())
|
||||||
{
|
{
|
||||||
int n = clnf_model.patch_experts.visibilities[0][0].rows;
|
int n = clnf_model.patch_experts.visibilities[0][0].rows;
|
||||||
featuresFile << "version: 1" << endl;
|
featuresFile << "version: 1" << endl;
|
||||||
featuresFile << "npoints: " << n << endl;
|
featuresFile << "npoints: " << n << endl;
|
||||||
featuresFile << "{" << endl;
|
featuresFile << "{" << endl;
|
||||||
|
|
||||||
for (int i = 0; i < n; ++ i)
|
for (int i = 0; i < n; ++i)
|
||||||
{
|
{
|
||||||
// Use matlab format, so + 1
|
// Use matlab format, so + 1
|
||||||
featuresFile << clnf_model.detected_landmarks.at<double>(i) + 1 << " " << clnf_model.detected_landmarks.at<double>(i+n) + 1 << endl;
|
featuresFile << clnf_model.detected_landmarks.at<double>(i) + 1 << " " << clnf_model.detected_landmarks.at<double>(i + n) + 1 << endl;
|
||||||
}
|
}
|
||||||
featuresFile << "}" << endl;
|
featuresFile << "}" << endl;
|
||||||
|
|
||||||
|
// Do the pose and eye gaze if present as well
|
||||||
|
featuresFile << "pose: eul_x, eul_y, eul_z: " << endl;
|
||||||
|
featuresFile << "{" << endl;
|
||||||
|
featuresFile << pose[3] << " " << pose[4] << " " << pose[5] << endl;
|
||||||
|
featuresFile << "}" << endl;
|
||||||
|
|
||||||
|
// Do the pose and eye gaze if present as well
|
||||||
|
featuresFile << "gaze: dir_x_1, dir_y_1, dir_z_1, dir_x_2, dir_y_2, dir_z_2: " << endl;
|
||||||
|
featuresFile << "{" << endl;
|
||||||
|
featuresFile << gaze0.x << " " << gaze0.y << " " << gaze0.z << " " << gaze1.x << " " << gaze1.y << " " << gaze1.z << endl;
|
||||||
|
featuresFile << "}" << endl;
|
||||||
|
|
||||||
|
// Do the au intensities
|
||||||
|
featuresFile << "au intensities: " << au_intensities.size() << endl;
|
||||||
|
featuresFile << "{" << endl;
|
||||||
|
|
||||||
|
for (int i = 0; i < au_intensities.size(); ++i)
|
||||||
|
{
|
||||||
|
// Use matlab format, so + 1
|
||||||
|
featuresFile << au_intensities[i].first << " " << au_intensities[i].second << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
featuresFile << "}" << endl;
|
||||||
|
|
||||||
|
// Do the au occurences
|
||||||
|
featuresFile << "au occurences: " << au_occurences.size() << endl;
|
||||||
|
featuresFile << "{" << endl;
|
||||||
|
|
||||||
|
for (int i = 0; i < au_occurences.size(); ++i)
|
||||||
|
{
|
||||||
|
// Use matlab format, so + 1
|
||||||
|
featuresFile << au_occurences[i].first << " " << au_occurences[i].second << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
featuresFile << "}" << endl;
|
||||||
|
|
||||||
|
|
||||||
|
featuresFile.close();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -315,6 +353,45 @@ int main (int argc, char **argv)
|
||||||
cv::CascadeClassifier classifier(det_parameters.face_detector_location);
|
cv::CascadeClassifier classifier(det_parameters.face_detector_location);
|
||||||
dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector();
|
dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector();
|
||||||
|
|
||||||
|
// Loading the AU prediction models
|
||||||
|
string au_loc = "AU_predictors/AU_all_static.txt";
|
||||||
|
|
||||||
|
if (!boost::filesystem::exists(boost::filesystem::path(au_loc)))
|
||||||
|
{
|
||||||
|
boost::filesystem::path loc = boost::filesystem::path(arguments[0]).parent_path() / au_loc;
|
||||||
|
|
||||||
|
if (boost::filesystem::exists(loc))
|
||||||
|
{
|
||||||
|
au_loc = loc.string();
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
cout << "Can't find AU prediction files, exiting" << endl;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Used for image masking for AUs
|
||||||
|
string tri_loc;
|
||||||
|
if (boost::filesystem::exists(boost::filesystem::path("model/tris_68_full.txt")))
|
||||||
|
{
|
||||||
|
std::ifstream triangulation_file("model/tris_68_full.txt");
|
||||||
|
tri_loc = "model/tris_68_full.txt";
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
boost::filesystem::path loc = boost::filesystem::path(arguments[0]).parent_path() / "model/tris_68_full.txt";
|
||||||
|
tri_loc = loc.string();
|
||||||
|
|
||||||
|
if (!exists(loc))
|
||||||
|
{
|
||||||
|
cout << "Can't find triangulation files, exiting" << endl;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
FaceAnalysis::FaceAnalyser face_analyser(vector<cv::Vec3d>(), 0.7, 112, 112, au_loc, tri_loc);
|
||||||
|
|
||||||
bool visualise = !det_parameters.quiet_mode;
|
bool visualise = !det_parameters.quiet_mode;
|
||||||
|
|
||||||
// Do some image loading
|
// Do some image loading
|
||||||
|
@ -396,6 +473,8 @@ int main (int argc, char **argv)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model, false);
|
||||||
|
|
||||||
// Writing out the detected landmarks (in an OS independent manner)
|
// Writing out the detected landmarks (in an OS independent manner)
|
||||||
if(!output_landmark_locations.empty())
|
if(!output_landmark_locations.empty())
|
||||||
{
|
{
|
||||||
|
@ -412,7 +491,7 @@ int main (int argc, char **argv)
|
||||||
boost::filesystem::path fname = out_feat_path.filename().replace_extension("");
|
boost::filesystem::path fname = out_feat_path.filename().replace_extension("");
|
||||||
boost::filesystem::path ext = out_feat_path.extension();
|
boost::filesystem::path ext = out_feat_path.extension();
|
||||||
string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string();
|
string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string();
|
||||||
write_out_landmarks(outfeatures, clnf_model);
|
write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, ActionUnits.first, ActionUnits.second);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!output_pose_locations.empty())
|
if (!output_pose_locations.empty())
|
||||||
|
@ -503,11 +582,13 @@ int main (int argc, char **argv)
|
||||||
FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false);
|
FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model, false);
|
||||||
|
|
||||||
// Writing out the detected landmarks
|
// Writing out the detected landmarks
|
||||||
if(!output_landmark_locations.empty())
|
if(!output_landmark_locations.empty())
|
||||||
{
|
{
|
||||||
string outfeatures = output_landmark_locations.at(i);
|
string outfeatures = output_landmark_locations.at(i);
|
||||||
write_out_landmarks(outfeatures, clnf_model);
|
write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, ActionUnits.first, ActionUnits.second);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Writing out the detected landmarks
|
// Writing out the detected landmarks
|
||||||
|
|
|
@ -324,7 +324,7 @@ int main (int argc, char **argv)
|
||||||
|
|
||||||
// Used for image masking
|
// Used for image masking
|
||||||
|
|
||||||
cv::Mat_<int> triangulation;
|
cv::Mat_<int> triangulation;//TODO rem?
|
||||||
string tri_loc;
|
string tri_loc;
|
||||||
if(boost::filesystem::exists(path("model/tris_68_full.txt")))
|
if(boost::filesystem::exists(path("model/tris_68_full.txt")))
|
||||||
{
|
{
|
||||||
|
|
|
@ -1,20 +1,18 @@
|
||||||
svr_disfa/AU_1_static.dat AU01
|
svm_combined/AU_1_dynamic.dat AU01
|
||||||
svr_disfa/AU_2_dyn.dat AU02
|
svm_combined/AU_2_dynamic.dat AU02
|
||||||
svr_disfa/AU_4_static.dat AU04
|
svm_combined/AU_4_static.dat AU04
|
||||||
svm_combined/AU_4_dynamic_combined_all.dat AU04
|
svm_combined/AU_5_static.dat AU05
|
||||||
svr_disfa/AU_5_dyn.dat AU05
|
svm_combined/AU_6_static.dat AU06
|
||||||
svr_combined/AU_6_static_intensity_combined.dat AU06
|
svm_combined/AU_7_static.dat AU07
|
||||||
svr_disfa/AU_9_dyn.dat AU09
|
svm_combined/AU_9_dynamic.dat AU09
|
||||||
svr_bp4d/AU_10_static_intensity.dat AU10
|
svm_combined/AU_10_static.dat AU10
|
||||||
svm_combined/AU_12_static_combined_all.dat AU12
|
svm_combined/AU_12_static.dat AU12
|
||||||
svr_combined/AU_12_static_intensity_combined.dat AU12
|
svm_combined/AU_14_static.dat AU14
|
||||||
svr_bp4d/AU_14_static_intensity.dat AU14
|
svm_combined/AU_15_dynamic.dat AU15
|
||||||
svr_disfa/AU_15_dyn.dat AU15
|
svm_combined/AU_17_dynamic.dat AU17
|
||||||
svm_combined/AU_15_dynamic_combined_all.dat AU15
|
svm_combined/AU_20_dynamic.dat AU20
|
||||||
svr_combined/AU_17_static_intensity_combined.dat AU17
|
svm_combined/AU_23_static.dat AU23
|
||||||
svr_disfa/AU_20_dyn.dat AU20
|
svm_combined/AU_25_dynamic.dat AU25
|
||||||
svm_bp4d/AU_23_static.dat AU23
|
svm_combined/AU_26_dynamic.dat AU26
|
||||||
svr_disfa/AU_25_static.dat AU25
|
svm_combined/AU_28_static.dat AU28
|
||||||
svr_disfa/AU_26_dyn.dat AU26
|
svm_combined/AU_45_dynamic.dat AU45
|
||||||
svm_semaine/AU_28_static.dat AU28
|
|
||||||
svm_semaine/AU_45_dynamic.dat AU45
|
|
|
@ -1,23 +1,35 @@
|
||||||
svr_disfa/AU_1_static.dat AU01
|
svm_combined/AU_1_static.dat AU01
|
||||||
svr_disfa/AU_2_static.dat AU02
|
svm_combined/AU_2_static.dat AU02
|
||||||
svr_disfa/AU_4_static.dat AU04
|
svm_combined/AU_4_static.dat AU04
|
||||||
svm_combined/AU_4_static_combined_all.dat AU04
|
svm_combined/AU_5_static.dat AU05
|
||||||
svr_disfa/AU_5_static.dat AU05
|
svm_combined/AU_6_static.dat AU06
|
||||||
svr_combined/AU_6_static_intensity_combined.dat AU06
|
svm_combined/AU_7_static.dat AU07
|
||||||
svm_bp4d/AU_7_static.dat AU07
|
svm_combined/AU_9_static.dat AU09
|
||||||
svr_disfa/AU_9_static.dat AU09
|
svm_combined/AU_10_static.dat AU10
|
||||||
svr_bp4d/AU_10_static_intensity.dat AU10
|
svm_combined/AU_12_static.dat AU12
|
||||||
svm_combined/AU_12_static_combined_all.dat AU12
|
svm_combined/AU_14_static.dat AU14
|
||||||
svr_combined/AU_12_static_intensity_combined.dat AU12
|
svm_combined/AU_15_static.dat AU15
|
||||||
svr_bp4d/AU_14_static_intensity.dat AU14
|
svm_combined/AU_17_static.dat AU17
|
||||||
svr_disfa/AU_15_static.dat AU15
|
svm_combined/AU_20_static.dat AU20
|
||||||
svm_combined/AU_15_static_combined_all.dat AU15
|
svm_combined/AU_23_static.dat AU23
|
||||||
svr_combined/AU_17_static_intensity_combined.dat AU17
|
svm_combined/AU_25_static.dat AU25
|
||||||
svm_combined/AU_17_static_combined_all.dat AU17
|
svm_combined/AU_26_static.dat AU26
|
||||||
svr_disfa/AU_20_static.dat AU20
|
svm_combined/AU_28_static.dat AU28
|
||||||
svm_bp4d/AU_23_static.dat AU23
|
svm_combined/AU_45_static.dat AU45
|
||||||
svr_disfa/AU_25_static.dat AU25
|
svr_combined/AU_1_static_intensity_comb.dat AU01
|
||||||
svm_combined/AU_25_static_combined_all.dat AU25
|
svr_combined/AU_2_static_intensity_comb.dat AU02
|
||||||
svr_disfa/AU_26_static.dat AU26
|
svr_combined/AU_4_static_intensity_comb.dat AU04
|
||||||
svm_semaine/AU_28_static.dat AU28
|
svr_combined/AU_5_static_intensity.dat AU05
|
||||||
svm_semaine/AU_45_static.dat AU45
|
svr_combined/AU_6_static_intensity_comb.dat AU06
|
||||||
|
svr_combined/AU_7_static_intensity_comb.dat AU07
|
||||||
|
svr_combined/AU_9_static_intensity.dat AU09
|
||||||
|
svr_combined/AU_10_static_intensity_comb.dat AU10
|
||||||
|
svr_combined/AU_12_static_intensity_comb.dat AU12
|
||||||
|
svr_combined/AU_14_static_intensity.dat AU14
|
||||||
|
svr_combined/AU_15_static_intensity_comb.dat AU15
|
||||||
|
svr_combined/AU_17_static_intensity_comb.dat AU17
|
||||||
|
svr_combined/AU_20_static_intensity.dat AU20
|
||||||
|
svr_combined/AU_23_static_intensity_comb.dat AU23
|
||||||
|
svr_combined/AU_25_static_intensity.dat AU25
|
||||||
|
svr_combined/AU_26_static_intensity_comb.dat AU26
|
||||||
|
svr_combined/AU_45_static_intensity_comb.dat AU45
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -99,6 +99,10 @@ public:
|
||||||
std::vector<std::pair<std::string, double>> GetCurrentAUsReg() const; // AU intensity
|
std::vector<std::pair<std::string, double>> GetCurrentAUsReg() const; // AU intensity
|
||||||
std::vector<std::pair<std::string, double>> GetCurrentAUsCombined() const; // Both presense and intensity
|
std::vector<std::pair<std::string, double>> GetCurrentAUsCombined() const; // Both presense and intensity
|
||||||
|
|
||||||
|
// A standalone call for predicting AUs from a static image, the first element in the pair represents occurence the second intensity
|
||||||
|
// This call is useful for detecting action units in images
|
||||||
|
std::pair<std::vector<std::pair<string, double>>, std::vector<std::pair<string, double>>> PredictStaticAUs(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf, bool visualise = true);
|
||||||
|
|
||||||
void Reset();
|
void Reset();
|
||||||
|
|
||||||
void GetLatestHOG(cv::Mat_<double>& hog_descriptor, int& num_rows, int& num_cols);
|
void GetLatestHOG(cv::Mat_<double>& hog_descriptor, int& num_rows, int& num_cols);
|
||||||
|
@ -123,8 +127,8 @@ public:
|
||||||
std::vector<bool> GetDynamicAUReg() const; // Intensity
|
std::vector<bool> GetDynamicAUReg() const; // Intensity
|
||||||
|
|
||||||
|
|
||||||
void ExtractAllPredictionsOfflineReg(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps);
|
void ExtractAllPredictionsOfflineReg(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
|
||||||
void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps);
|
void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
|
|
|
@ -303,6 +303,59 @@ void FaceAnalyser::ExtractCurrentMedians(vector<cv::Mat>& hog_medians, vector<cv
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::pair<std::vector<std::pair<string, double>>, std::vector<std::pair<string, double>>> FaceAnalyser::PredictStaticAUs(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf, bool visualise)
|
||||||
|
{
|
||||||
|
|
||||||
|
// First align the face
|
||||||
|
AlignFaceMask(aligned_face, frame, clnf, triangulation, true, align_scale, align_width, align_height);
|
||||||
|
|
||||||
|
// Extract HOG descriptor from the frame and convert it to a useable format
|
||||||
|
cv::Mat_<double> hog_descriptor;
|
||||||
|
Extract_FHOG_descriptor(hog_descriptor, aligned_face, this->num_hog_rows, this->num_hog_cols);
|
||||||
|
|
||||||
|
// Store the descriptor
|
||||||
|
hog_desc_frame = hog_descriptor;
|
||||||
|
|
||||||
|
cv::Vec3d curr_orient(clnf.params_global[1], clnf.params_global[2], clnf.params_global[3]);
|
||||||
|
int orientation_to_use = GetViewId(this->head_orientations, curr_orient);
|
||||||
|
|
||||||
|
// Geom descriptor and its median
|
||||||
|
geom_descriptor_frame = clnf.params_local.t();
|
||||||
|
|
||||||
|
// Stack with the actual feature point locations (without mean)
|
||||||
|
cv::Mat_<double> locs = clnf.pdm.princ_comp * geom_descriptor_frame.t();
|
||||||
|
|
||||||
|
cv::hconcat(locs.t(), geom_descriptor_frame.clone(), geom_descriptor_frame);
|
||||||
|
|
||||||
|
// First convert the face image to double representation as a row vector
|
||||||
|
cv::Mat_<uchar> aligned_face_cols(1, aligned_face.cols * aligned_face.rows * aligned_face.channels(), aligned_face.data, 1);
|
||||||
|
cv::Mat_<double> aligned_face_cols_double;
|
||||||
|
aligned_face_cols.convertTo(aligned_face_cols_double, CV_64F);
|
||||||
|
|
||||||
|
// Visualising the median HOG
|
||||||
|
if (visualise)
|
||||||
|
{
|
||||||
|
FaceAnalysis::Visualise_FHOG(hog_descriptor, num_hog_rows, num_hog_cols, hog_descriptor_visualisation);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Perform AU prediction
|
||||||
|
auto AU_predictions_intensity = PredictCurrentAUs(orientation_to_use);
|
||||||
|
auto AU_predictions_occurence = PredictCurrentAUsClass(orientation_to_use);
|
||||||
|
|
||||||
|
// Make sure intensity is within range (0-5)
|
||||||
|
for (size_t au = 0; au < AU_predictions_intensity.size(); ++au)
|
||||||
|
{
|
||||||
|
if (AU_predictions_intensity[au].second < 0)
|
||||||
|
AU_predictions_intensity[au].second = 0;
|
||||||
|
|
||||||
|
if (AU_predictions_intensity[au].second > 5)
|
||||||
|
AU_predictions_intensity[au].second = 5;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::pair<std::vector<std::pair<std::string, double>>, std::vector<std::pair<std::string, double>>>(AU_predictions_intensity, AU_predictions_occurence);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, double timestamp_seconds, bool online, bool visualise)
|
void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, double timestamp_seconds, bool online, bool visualise)
|
||||||
{
|
{
|
||||||
|
|
||||||
|
@ -607,7 +660,6 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
||||||
confidences = this->confidences;
|
confidences = this->confidences;
|
||||||
successes = this->valid_preds;
|
successes = this->valid_preds;
|
||||||
|
|
||||||
// TODO only if the video is long enough or there is enough range? Compare stdev of BP4D and this
|
|
||||||
for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter)
|
for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter)
|
||||||
{
|
{
|
||||||
vector<double> au_good;
|
vector<double> au_good;
|
||||||
|
@ -665,6 +717,28 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Perform some prediction smoothing
|
||||||
|
for (auto au_iter = au_predictions.begin(); au_iter != au_predictions.end(); ++au_iter)
|
||||||
|
{
|
||||||
|
string au_name = au_iter->first;
|
||||||
|
|
||||||
|
// Perform a moving average of 3 frames
|
||||||
|
int window_size = 3;
|
||||||
|
vector<double> au_vals_tmp = au_iter->second;
|
||||||
|
for (size_t i = (window_size - 1) / 2; i < au_iter->second.size() - (window_size - 1) / 2; ++i)
|
||||||
|
{
|
||||||
|
double sum = 0;
|
||||||
|
for (int w = -(window_size - 1) / 2; w < (window_size - 1) / 2; ++w)
|
||||||
|
{
|
||||||
|
sum += au_vals_tmp[i + w];
|
||||||
|
}
|
||||||
|
sum = sum / window_size;
|
||||||
|
|
||||||
|
au_iter->second[i] = sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -1,11 +1,11 @@
|
||||||
AU1 class, Precision - 0.426, Recall - 0.389, F1 - 0.406
|
AU1 class, Precision - 0.470, Recall - 0.527, F1 - 0.497
|
||||||
AU2 class, Precision - 0.326, Recall - 0.366, F1 - 0.345
|
AU2 class, Precision - 0.371, Recall - 0.376, F1 - 0.373
|
||||||
AU4 class, Precision - 0.465, Recall - 0.441, F1 - 0.453
|
AU4 class, Precision - 0.422, Recall - 0.570, F1 - 0.485
|
||||||
AU6 class, Precision - 0.759, Recall - 0.760, F1 - 0.760
|
AU6 class, Precision - 0.845, Recall - 0.698, F1 - 0.765
|
||||||
AU7 class, Precision - 0.741, Recall - 0.660, F1 - 0.698
|
AU7 class, Precision - 0.719, Recall - 0.766, F1 - 0.742
|
||||||
AU10 class, Precision - 0.863, Recall - 0.813, F1 - 0.837
|
AU10 class, Precision - 0.811, Recall - 0.801, F1 - 0.806
|
||||||
AU12 class, Precision - 0.882, Recall - 0.846, F1 - 0.864
|
AU12 class, Precision - 0.902, Recall - 0.780, F1 - 0.837
|
||||||
AU14 class, Precision - 0.575, Recall - 0.776, F1 - 0.660
|
AU14 class, Precision - 0.513, Recall - 0.874, F1 - 0.647
|
||||||
AU15 class, Precision - 0.348, Recall - 0.538, F1 - 0.423
|
AU15 class, Precision - 0.406, Recall - 0.431, F1 - 0.418
|
||||||
AU17 class, Precision - 0.575, Recall - 0.595, F1 - 0.585
|
AU17 class, Precision - 0.638, Recall - 0.615, F1 - 0.626
|
||||||
AU23 class, Precision - 0.395, Recall - 0.514, F1 - 0.447
|
AU23 class, Precision - 0.357, Recall - 0.507, F1 - 0.419
|
||||||
|
|
|
@ -0,0 +1,17 @@
|
||||||
|
AU1 class, Precision - 0.371, Recall - 0.756, F1 - 0.498
|
||||||
|
AU2 class, Precision - 0.303, Recall - 0.829, F1 - 0.443
|
||||||
|
AU4 class, Precision - 0.552, Recall - 0.856, F1 - 0.671
|
||||||
|
AU5 class, Precision - 0.361, Recall - 0.878, F1 - 0.511
|
||||||
|
AU6 class, Precision - 0.348, Recall - 0.817, F1 - 0.488
|
||||||
|
AU7 class, Precision - 0.819, Recall - 0.717, F1 - 0.765
|
||||||
|
AU9 class, Precision - 0.361, Recall - 0.946, F1 - 0.522
|
||||||
|
AU10 class, Precision - 0.336, Recall - 0.780, F1 - 0.469
|
||||||
|
AU12 class, Precision - 0.687, Recall - 0.856, F1 - 0.762
|
||||||
|
AU14 class, Precision - 0.190, Recall - 0.863, F1 - 0.311
|
||||||
|
AU15 class, Precision - 0.156, Recall - 0.844, F1 - 0.263
|
||||||
|
AU17 class, Precision - 0.284, Recall - 0.866, F1 - 0.428
|
||||||
|
AU20 class, Precision - 0.130, Recall - 0.930, F1 - 0.228
|
||||||
|
AU23 class, Precision - 0.103, Recall - 0.837, F1 - 0.183
|
||||||
|
AU25 class, Precision - 0.839, Recall - 0.829, F1 - 0.834
|
||||||
|
AU26 class, Precision - 0.363, Recall - 0.794, F1 - 0.498
|
||||||
|
AU45 class, Precision - 0.377, Recall - 0.842, F1 - 0.521
|
|
@ -1,6 +1,6 @@
|
||||||
AU2 class, Precision - 0.489, Recall - 0.536, F1 - 0.511
|
AU2 class, Precision - 0.366, Recall - 0.718, F1 - 0.484
|
||||||
AU12 class, Precision - 0.521, Recall - 0.751, F1 - 0.615
|
AU12 class, Precision - 0.434, Recall - 0.790, F1 - 0.560
|
||||||
AU17 class, Precision - 0.408, Recall - 0.486, F1 - 0.444
|
AU17 class, Precision - 0.129, Recall - 0.830, F1 - 0.223
|
||||||
AU25 class, Precision - 0.410, Recall - 0.542, F1 - 0.467
|
AU25 class, Precision - 0.362, Recall - 0.580, F1 - 0.446
|
||||||
AU28 class, Precision - 0.493, Recall - 0.398, F1 - 0.441
|
AU28 class, Precision - 0.362, Recall - 0.514, F1 - 0.425
|
||||||
AU45 class, Precision - 0.223, Recall - 0.723, F1 - 0.341
|
AU45 class, Precision - 0.295, Recall - 0.571, F1 - 0.389
|
||||||
|
|
|
@ -0,0 +1,103 @@
|
||||||
|
function [ labels, valid_ids, filenames ] = extract_Bosphorus_labels( Bosphorus_dir, recs, aus )
|
||||||
|
%EXTRACT_SEMAINE_LABELS Summary of this function goes here
|
||||||
|
% Detailed explanation goes here
|
||||||
|
|
||||||
|
% Ignoring rare ones or ones that don't overlap with other datasets
|
||||||
|
aus_Bosphorus = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 43];
|
||||||
|
aus(aus == 45) = 43;
|
||||||
|
|
||||||
|
%%
|
||||||
|
fid = fopen([Bosphorus_dir, './facscodes/facscodes.lst']);
|
||||||
|
% Skipping the header
|
||||||
|
fgetl(fid);
|
||||||
|
fgetl(fid);
|
||||||
|
|
||||||
|
% Starting to read
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
all_aus = [];
|
||||||
|
valid = [];
|
||||||
|
|
||||||
|
id = 1;
|
||||||
|
|
||||||
|
filenames = {};
|
||||||
|
|
||||||
|
while ischar(data)
|
||||||
|
|
||||||
|
d = strsplit(data, '->');
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
filename = strtrim(d{1});
|
||||||
|
|
||||||
|
% Skip extreme poses
|
||||||
|
if(~isempty(findstr(filename, 'CR')) || ~isempty(findstr(filename, 'YR') > 0) || ~isempty(findstr(filename, 'PR_U'))|| ~isempty(findstr(filename, 'PR_D')))
|
||||||
|
continue;
|
||||||
|
end
|
||||||
|
|
||||||
|
% ignore labels from non requested users
|
||||||
|
if(isempty(strmatch(filename(1:5), recs)))
|
||||||
|
continue;
|
||||||
|
end
|
||||||
|
|
||||||
|
filenames = cat(1, filenames, filename);
|
||||||
|
|
||||||
|
aus_str = d{2}(3:end);
|
||||||
|
|
||||||
|
% decode the AU data
|
||||||
|
aus_c = strsplit(aus_str, '+');
|
||||||
|
|
||||||
|
curr_img_au = zeros(1, 80);
|
||||||
|
|
||||||
|
for i=1:numel(aus_c)
|
||||||
|
|
||||||
|
if(aus_c{i} == '0')
|
||||||
|
|
||||||
|
continue
|
||||||
|
end
|
||||||
|
|
||||||
|
intensity = -1;
|
||||||
|
|
||||||
|
intensity_str = aus_c{i}(end);
|
||||||
|
if(intensity_str == 'A')
|
||||||
|
intensity = 1;
|
||||||
|
elseif(intensity_str == 'B')
|
||||||
|
intensity = 2;
|
||||||
|
elseif(intensity_str == 'C')
|
||||||
|
intensity = 3;
|
||||||
|
elseif(intensity_str == 'D')
|
||||||
|
intensity = 4;
|
||||||
|
elseif(intensity_str == 'E')
|
||||||
|
intensity = 5;
|
||||||
|
end
|
||||||
|
|
||||||
|
if(~isempty(str2num(aus_c{i}(1))))
|
||||||
|
if(intensity ~= -1)
|
||||||
|
num = str2num(aus_c{i}(1:end-1));
|
||||||
|
else
|
||||||
|
num = str2num(aus_c{i}(1:end));
|
||||||
|
intensity = 3; % if no intensity given just assume 3
|
||||||
|
end
|
||||||
|
else
|
||||||
|
if(intensity ~= -1)
|
||||||
|
num = str2num(aus_c{i}(2:end-1));
|
||||||
|
else
|
||||||
|
num = str2num(aus_c{i}(2:end));
|
||||||
|
intensity = 3; % if no intensity given just assume 3
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
curr_img_au(1, num) = intensity;
|
||||||
|
end
|
||||||
|
all_aus = cat(1, all_aus, curr_img_au);
|
||||||
|
valid = cat(1, valid, [true]);
|
||||||
|
|
||||||
|
id = id + 1;
|
||||||
|
|
||||||
|
end
|
||||||
|
%aus_bosph = dlmread(, '->', 3, 0);
|
||||||
|
fclose(fid);
|
||||||
|
|
||||||
|
valid_ids = logical(valid);
|
||||||
|
labels = all_aus(:, aus);
|
||||||
|
end
|
||||||
|
|
|
@ -0,0 +1,21 @@
|
||||||
|
if(exist('D:/Datasets/Bosphorus/', 'file'))
|
||||||
|
Bosphorus_dir = 'D:\Datasets\Bosphorus/';
|
||||||
|
else
|
||||||
|
fprintf('Bosphorus dataset location not found (or not defined)\n');
|
||||||
|
end
|
||||||
|
|
||||||
|
hog_data_dir = ['D:\Datasets\face_datasets'];
|
||||||
|
|
||||||
|
all_recs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
|
||||||
|
all_recs_mat = cat(1, all_recs.name);
|
||||||
|
all_recs = cell(numel(all_recs), 1);
|
||||||
|
|
||||||
|
for i=1:size(all_recs_mat,1)
|
||||||
|
|
||||||
|
all_recs{i} = all_recs_mat(i,:);
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
devel_recs = all_recs(1:3:end);
|
||||||
|
train_recs = setdiff(all_recs, devel_recs);
|
||||||
|
|
|
@ -13,32 +13,56 @@ executable = '"../../x64/Release/FeatureExtraction.exe"';
|
||||||
|
|
||||||
bp4d_dirs = {'F002', 'F004', 'F006', 'F008', 'F010', 'F012', 'F014', 'F016', 'F018', 'F020', 'F022', 'M002', 'M004', 'M006', 'M008', 'M010', 'M012', 'M014', 'M016', 'M018'};
|
bp4d_dirs = {'F002', 'F004', 'F006', 'F008', 'F010', 'F012', 'F014', 'F016', 'F018', 'F020', 'F022', 'M002', 'M004', 'M006', 'M008', 'M010', 'M012', 'M014', 'M016', 'M018'};
|
||||||
|
|
||||||
parfor f1=1:numel(bp4d_dirs)
|
%% Before running BP4D convert it to a smaller format and move each person to the same directory
|
||||||
|
% This is done so that dynamic models would work on it as otherwise the
|
||||||
|
% clips are a bit too short
|
||||||
|
|
||||||
if(isdir([bp4d_loc, bp4d_dirs{f1}]))
|
new_bp4d_dirs = {};
|
||||||
|
|
||||||
|
% This might take some time
|
||||||
|
for i = 1:numel(bp4d_dirs)
|
||||||
|
dirs = dir([bp4d_loc, '/', bp4d_dirs{i}, '/T*']);
|
||||||
|
tmp_dir = [bp4d_loc, '/', bp4d_dirs{i}, '/tmp/'];
|
||||||
|
new_bp4d_dirs = cat(1, new_bp4d_dirs, tmp_dir);
|
||||||
|
|
||||||
|
if(~exist(tmp_dir, 'file'))
|
||||||
|
mkdir(tmp_dir);
|
||||||
|
|
||||||
bp4d_2_dirs = dir([bp4d_loc, bp4d_dirs{f1}]);
|
% Move all images and resize them
|
||||||
bp4d_2_dirs = bp4d_2_dirs(3:end);
|
for d=1:numel(dirs)
|
||||||
|
|
||||||
f1_dir = bp4d_dirs{f1};
|
in_files = dir([bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/*.jpg']);
|
||||||
|
|
||||||
command = [executable ' -asvid -q -no2Dfp -no3Dfp -noMparams -noPose -noGaze '];
|
for img_ind=1:numel(in_files)
|
||||||
|
|
||||||
for f2=1:numel(bp4d_2_dirs)
|
img_file = [bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/', in_files(img_ind).name];
|
||||||
f2_dir = bp4d_2_dirs(f2).name;
|
img = imread(img_file);
|
||||||
if(isdir([bp4d_loc, bp4d_dirs{f1}]))
|
img = imresize(img, 0.5);
|
||||||
|
img_out = [tmp_dir, dirs(d).name, '_', in_files(img_ind).name];
|
||||||
|
imwrite(img, img_out);
|
||||||
|
|
||||||
curr_vid = [bp4d_loc, f1_dir, '/', f2_dir, '/'];
|
|
||||||
|
|
||||||
name = [f1_dir '_' f2_dir];
|
|
||||||
output_file = [out_loc name '.au.txt'];
|
|
||||||
|
|
||||||
command = cat(2, command, [' -fdir "' curr_vid '" -of "' output_file '"']);
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
dos(command);
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
end
|
||||||
|
%%
|
||||||
|
|
||||||
|
parfor f1=1:numel(new_bp4d_dirs)
|
||||||
|
% TODO rem - attempt a static model
|
||||||
|
command = [executable ' -asvid -no2Dfp -no3Dfp -noMparams -noPose -noGaze '];
|
||||||
|
|
||||||
|
[f,~,~] = fileparts(new_bp4d_dirs{f1});
|
||||||
|
[f,~,~] = fileparts(f);
|
||||||
|
[~,f,~] = fileparts(f);
|
||||||
|
output_file = [out_loc f '.au.txt'];
|
||||||
|
|
||||||
|
command = cat(2, command, [' -fdir "' new_bp4d_dirs{f1} '" -of "' output_file '"']);
|
||||||
|
|
||||||
|
dos(command);
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
%%
|
%%
|
||||||
|
@ -52,7 +76,7 @@ aus_BP4D = [1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23];
|
||||||
labels_gt = cat(1, labels_gt{:});
|
labels_gt = cat(1, labels_gt{:});
|
||||||
|
|
||||||
%% Identifying which column IDs correspond to which AU
|
%% Identifying which column IDs correspond to which AU
|
||||||
tab = readtable([out_loc, bp4d_dirs{1}, '_T1.au.txt']);
|
tab = readtable([out_loc, bp4d_dirs{1}, '.au.txt']);
|
||||||
column_names = tab.Properties.VariableNames;
|
column_names = tab.Properties.VariableNames;
|
||||||
|
|
||||||
% As there are both classes and intensities list and evaluate both of them
|
% As there are both classes and intensities list and evaluate both of them
|
||||||
|
@ -92,9 +116,13 @@ end
|
||||||
preds_all_class = [];
|
preds_all_class = [];
|
||||||
preds_all_int = [];
|
preds_all_int = [];
|
||||||
|
|
||||||
for i=1:numel(filenames)
|
for i=1:numel(new_bp4d_dirs)
|
||||||
|
|
||||||
fname = [out_loc, filenames{i}, '.au.txt'];
|
[f,~,~] = fileparts(new_bp4d_dirs{i});
|
||||||
|
[f,~,~] = fileparts(f);
|
||||||
|
[~,f,~] = fileparts(f);
|
||||||
|
|
||||||
|
fname = [out_loc, f, '.au.txt'];
|
||||||
preds = dlmread(fname, ',', 1, 0);
|
preds = dlmread(fname, ',', 1, 0);
|
||||||
|
|
||||||
% Read all of the intensity AUs
|
% Read all of the intensity AUs
|
||||||
|
|
|
@ -0,0 +1,189 @@
|
||||||
|
% Perform static model prediction using images
|
||||||
|
|
||||||
|
clear
|
||||||
|
|
||||||
|
addpath('./helpers');
|
||||||
|
|
||||||
|
find_Bosphorus;
|
||||||
|
out_loc = './out_bosph/';
|
||||||
|
|
||||||
|
if(~exist(out_loc, 'dir'))
|
||||||
|
mkdir(out_loc);
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
executable = '"../../x64/Release/FaceLandmarkImg.exe"';
|
||||||
|
|
||||||
|
bosph_dirs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
|
||||||
|
|
||||||
|
%%
|
||||||
|
parfor f1=1:numel(bosph_dirs)
|
||||||
|
|
||||||
|
command = executable;
|
||||||
|
|
||||||
|
input_dir = [Bosphorus_dir, '/BosphorusDB/BosphorusDB/', bosph_dirs(f1).name];
|
||||||
|
command = cat(2, command, [' -fdir "' input_dir '" -ofdir "' out_loc '"']);
|
||||||
|
command = cat(2, command, ' -multi_view 1 -wild');
|
||||||
|
|
||||||
|
dos(command);
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
|
||||||
|
aus_Bosph = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 45];
|
||||||
|
|
||||||
|
[ labels_gt, valid_ids, filenames] = extract_Bosphorus_labels(Bosphorus_dir, all_recs, aus_Bosph);
|
||||||
|
|
||||||
|
%% Read the predicted values
|
||||||
|
|
||||||
|
% First read the first file to get the ids and line numbers
|
||||||
|
% au occurences
|
||||||
|
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
ind = 0;
|
||||||
|
beg_ind = -1;
|
||||||
|
end_ind = -1;
|
||||||
|
aus_det = [];
|
||||||
|
aus_det_id = [];
|
||||||
|
|
||||||
|
while ischar(data)
|
||||||
|
if(~isempty(findstr(data, 'au occurences:')))
|
||||||
|
num_occurences = str2num(data(numel('au occurences:')+1:end));
|
||||||
|
% Skip ahead two lines
|
||||||
|
data = fgetl(fid);
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 2;
|
||||||
|
beg_ind = ind;
|
||||||
|
end
|
||||||
|
|
||||||
|
if(beg_ind ~= -1 && end_ind == -1)
|
||||||
|
if(~isempty(findstr(data, '}')))
|
||||||
|
end_ind = ind;
|
||||||
|
else
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
|
||||||
|
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 1;
|
||||||
|
end
|
||||||
|
fclose(fid);
|
||||||
|
|
||||||
|
%%
|
||||||
|
labels_pred = zeros(size(labels_gt));
|
||||||
|
for i=1:numel(filenames)
|
||||||
|
|
||||||
|
% Will need to read the relevant AUs only
|
||||||
|
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
|
||||||
|
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
|
||||||
|
for k=1:beg_ind
|
||||||
|
data = fgetl(fid);
|
||||||
|
end
|
||||||
|
|
||||||
|
for k=1:num_occurences
|
||||||
|
data = fgetl(fid);
|
||||||
|
if(sum(aus_Bosph == aus_det(k))>0)
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
fclose(fid);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
%%
|
||||||
|
|
||||||
|
|
||||||
|
%%
|
||||||
|
f = fopen('Bosphorus_res_class.txt', 'w');
|
||||||
|
for au = 1:numel(aus_Bosph)
|
||||||
|
|
||||||
|
if(inds_au_int(au) ~= 0)
|
||||||
|
tp = sum(labels_gt(:,au) == 1 & preds_all_int(:, inds_au_int(au)) >= 1);
|
||||||
|
fp = sum(labels_gt(:,au) == 0 & preds_all_int(:, inds_au_int(au)) >= 1);
|
||||||
|
fn = sum(labels_gt(:,au) == 1 & preds_all_int(:, inds_au_int(au)) < 1);
|
||||||
|
tn = sum(labels_gt(:,au) == 0 & preds_all_int(:, inds_au_int(au)) < 1);
|
||||||
|
|
||||||
|
precision = tp./(tp+fp);
|
||||||
|
recall = tp./(tp+fn);
|
||||||
|
|
||||||
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
||||||
|
|
||||||
|
fprintf(f, 'AU%d intensity, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_BP4D(au), precision, recall, f1);
|
||||||
|
end
|
||||||
|
|
||||||
|
if(inds_au_class(au) ~= 0)
|
||||||
|
tp = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 1);
|
||||||
|
fp = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 1);
|
||||||
|
fn = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 0);
|
||||||
|
tn = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 0);
|
||||||
|
|
||||||
|
precision = tp./(tp+fp);
|
||||||
|
recall = tp./(tp+fn);
|
||||||
|
|
||||||
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
||||||
|
|
||||||
|
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_BP4D(au), precision, recall, f1);
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
||||||
|
fclose(f);
|
||||||
|
|
||||||
|
%%
|
||||||
|
addpath('./helpers/');
|
||||||
|
|
||||||
|
find_BP4D;
|
||||||
|
|
||||||
|
aus_BP4D = [6, 10, 12, 14, 17];
|
||||||
|
[ labels_gt, valid_ids, vid_ids, filenames] = extract_BP4D_labels_intensity(BP4D_dir_int, devel_recs, aus_BP4D);
|
||||||
|
labels_gt = cat(1, labels_gt{:});
|
||||||
|
|
||||||
|
%% Identifying which column IDs correspond to which AU
|
||||||
|
tab = readtable([out_loc, bosph_dirs{1}, '_T1.au.txt']);
|
||||||
|
column_names = tab.Properties.VariableNames;
|
||||||
|
|
||||||
|
% As there are both classes and intensities list and evaluate both of them
|
||||||
|
aus_pred_int = [];
|
||||||
|
inds_int_in_file = [];
|
||||||
|
|
||||||
|
for c=1:numel(column_names)
|
||||||
|
if(strfind(column_names{c}, '_r') > 0)
|
||||||
|
aus_pred_int = cat(1, aus_pred_int, int32(str2num(column_names{c}(3:end-2))));
|
||||||
|
inds_int_in_file = cat(1, inds_int_in_file, c);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
inds_au_int = zeros(size(aus_BP4D));
|
||||||
|
|
||||||
|
for ind=1:numel(aus_BP4D)
|
||||||
|
if(~isempty(find(aus_pred_int==aus_BP4D(ind), 1)))
|
||||||
|
inds_au_int(ind) = find(aus_pred_int==aus_BP4D(ind));
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
preds_all_int = [];
|
||||||
|
|
||||||
|
for i=1:numel(filenames)
|
||||||
|
|
||||||
|
fname = [out_loc, filenames{i}, '.au.txt'];
|
||||||
|
preds = dlmread(fname, ',', 1, 0);
|
||||||
|
|
||||||
|
% Read all of the intensity AUs
|
||||||
|
preds_int = preds(:, inds_int_in_file);
|
||||||
|
preds_all_int = cat(1, preds_all_int, preds_int);
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
f = fopen('BP4D_valid_res_int.txt', 'w');
|
||||||
|
for au = 1:numel(aus_BP4D)
|
||||||
|
[ accuracies, F1s, corrs, ccc, rms, classes ] = evaluate_au_prediction_results( preds_all_int(:, inds_au_int(au)), labels_gt(:,au));
|
||||||
|
fprintf(f, 'AU%d results - corr %.3f, ccc - %.3f\n', aus_BP4D(au), corrs, ccc);
|
||||||
|
end
|
||||||
|
fclose(f);
|
|
@ -0,0 +1,200 @@
|
||||||
|
% Perform static model prediction using images
|
||||||
|
|
||||||
|
clear
|
||||||
|
|
||||||
|
addpath('./helpers');
|
||||||
|
|
||||||
|
find_Bosphorus;
|
||||||
|
out_loc = './out_bosph/';
|
||||||
|
|
||||||
|
if(~exist(out_loc, 'dir'))
|
||||||
|
mkdir(out_loc);
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
executable = '"../../x64/Release/FaceLandmarkImg.exe"';
|
||||||
|
|
||||||
|
bosph_dirs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
|
||||||
|
|
||||||
|
%%
|
||||||
|
parfor f1=1:numel(bosph_dirs)
|
||||||
|
|
||||||
|
command = executable;
|
||||||
|
|
||||||
|
input_dir = [Bosphorus_dir, '/BosphorusDB/BosphorusDB/', bosph_dirs(f1).name];
|
||||||
|
command = cat(2, command, [' -fdir "' input_dir '" -ofdir "' out_loc '"']);
|
||||||
|
command = cat(2, command, ' -multi_view 1 -wild');
|
||||||
|
|
||||||
|
dos(command);
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
|
||||||
|
aus_Bosph = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 45];
|
||||||
|
|
||||||
|
[ labels_gt, valid_ids, filenames] = extract_Bosphorus_labels(Bosphorus_dir, all_recs, aus_Bosph);
|
||||||
|
|
||||||
|
%% Read the predicted values
|
||||||
|
|
||||||
|
% First read the first file to get the ids and line numbers
|
||||||
|
% au occurences
|
||||||
|
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
ind = 0;
|
||||||
|
beg_ind = -1;
|
||||||
|
end_ind = -1;
|
||||||
|
aus_det = [];
|
||||||
|
aus_det_id = [];
|
||||||
|
|
||||||
|
while ischar(data)
|
||||||
|
if(~isempty(findstr(data, 'au occurences:')))
|
||||||
|
num_occurences = str2num(data(numel('au occurences:')+1:end));
|
||||||
|
% Skip ahead two lines
|
||||||
|
data = fgetl(fid);
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 2;
|
||||||
|
beg_ind = ind;
|
||||||
|
end
|
||||||
|
|
||||||
|
if(beg_ind ~= -1 && end_ind == -1)
|
||||||
|
if(~isempty(findstr(data, '}')))
|
||||||
|
end_ind = ind;
|
||||||
|
else
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
|
||||||
|
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 1;
|
||||||
|
end
|
||||||
|
fclose(fid);
|
||||||
|
|
||||||
|
%%
|
||||||
|
labels_pred = zeros(size(labels_gt));
|
||||||
|
for i=1:numel(filenames)
|
||||||
|
|
||||||
|
% Will need to read the relevant AUs only
|
||||||
|
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
|
||||||
|
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
|
||||||
|
for k=1:beg_ind
|
||||||
|
data = fgetl(fid);
|
||||||
|
end
|
||||||
|
|
||||||
|
for k=1:num_occurences
|
||||||
|
data = fgetl(fid);
|
||||||
|
if(sum(aus_Bosph == aus_det(k))>0)
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
fclose(fid);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
f = fopen('Bosphorus_res_class.txt', 'w');
|
||||||
|
labels_gt_bin = labels_gt;
|
||||||
|
labels_gt_bin(labels_gt_bin > 1) = 1;
|
||||||
|
for au = 1:numel(aus_Bosph)
|
||||||
|
|
||||||
|
tp = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 1);
|
||||||
|
fp = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 1);
|
||||||
|
fn = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 0);
|
||||||
|
tn = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 0);
|
||||||
|
|
||||||
|
precision = tp./(tp+fp);
|
||||||
|
recall = tp./(tp+fn);
|
||||||
|
|
||||||
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
||||||
|
|
||||||
|
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_Bosph(au), precision, recall, f1);
|
||||||
|
|
||||||
|
end
|
||||||
|
fclose(f);
|
||||||
|
|
||||||
|
%% Read the predicted values for intensities
|
||||||
|
|
||||||
|
% First read the first file to get the ids and line numbers
|
||||||
|
% au occurences
|
||||||
|
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
ind = 0;
|
||||||
|
beg_ind = -1;
|
||||||
|
end_ind = -1;
|
||||||
|
aus_det = [];
|
||||||
|
aus_det_id = [];
|
||||||
|
|
||||||
|
while ischar(data)
|
||||||
|
if(~isempty(findstr(data, 'au intensities:')))
|
||||||
|
num_occurences = str2num(data(numel('au intensities:')+1:end));
|
||||||
|
% Skip ahead two lines
|
||||||
|
data = fgetl(fid);
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 2;
|
||||||
|
beg_ind = ind;
|
||||||
|
end
|
||||||
|
|
||||||
|
if(beg_ind ~= -1 && end_ind == -1)
|
||||||
|
if(~isempty(findstr(data, '}')))
|
||||||
|
end_ind = ind;
|
||||||
|
else
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
|
||||||
|
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
data = fgetl(fid);
|
||||||
|
ind = ind + 1;
|
||||||
|
end
|
||||||
|
fclose(fid);
|
||||||
|
|
||||||
|
%%
|
||||||
|
labels_pred = zeros(size(labels_gt));
|
||||||
|
for i=1:numel(filenames)
|
||||||
|
|
||||||
|
% Will need to read the relevant AUs only
|
||||||
|
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
|
||||||
|
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
|
||||||
|
for k=1:beg_ind
|
||||||
|
data = fgetl(fid);
|
||||||
|
end
|
||||||
|
|
||||||
|
for k=1:num_occurences
|
||||||
|
data = fgetl(fid);
|
||||||
|
if(sum(aus_Bosph == aus_det(k))>0)
|
||||||
|
d = strsplit(data, ' ');
|
||||||
|
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
fclose(fid);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
f = fopen('Bosphorus_res_class.txt', 'w');
|
||||||
|
labels_gt_bin = labels_gt;
|
||||||
|
labels_gt_bin(labels_gt_bin > 1) = 1;
|
||||||
|
for au = 1:numel(aus_Bosph)
|
||||||
|
|
||||||
|
tp = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 1);
|
||||||
|
fp = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 1);
|
||||||
|
fn = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 0);
|
||||||
|
tn = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 0);
|
||||||
|
|
||||||
|
precision = tp./(tp+fp);
|
||||||
|
recall = tp./(tp+fn);
|
||||||
|
|
||||||
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
||||||
|
|
||||||
|
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_Bosph(au), precision, recall, f1);
|
||||||
|
|
||||||
|
end
|
||||||
|
fclose(f);
|
|
@ -0,0 +1,103 @@
|
||||||
|
function [ labels, valid_ids, filenames ] = extract_Bosphorus_labels( Bosphorus_dir, recs, aus )
|
||||||
|
%EXTRACT_SEMAINE_LABELS Summary of this function goes here
|
||||||
|
% Detailed explanation goes here
|
||||||
|
|
||||||
|
% Ignoring rare ones or ones that don't overlap with other datasets
|
||||||
|
aus_Bosphorus = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 43];
|
||||||
|
aus(aus == 45) = 43;
|
||||||
|
|
||||||
|
%%
|
||||||
|
fid = fopen([Bosphorus_dir, './facscodes/facscodes.lst']);
|
||||||
|
% Skipping the header
|
||||||
|
fgetl(fid);
|
||||||
|
fgetl(fid);
|
||||||
|
|
||||||
|
% Starting to read
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
all_aus = [];
|
||||||
|
valid = [];
|
||||||
|
|
||||||
|
id = 1;
|
||||||
|
|
||||||
|
filenames = {};
|
||||||
|
|
||||||
|
while ischar(data)
|
||||||
|
|
||||||
|
d = strsplit(data, '->');
|
||||||
|
data = fgetl(fid);
|
||||||
|
|
||||||
|
filename = strtrim(d{1});
|
||||||
|
|
||||||
|
% Skip extreme poses
|
||||||
|
if(~isempty(findstr(filename, 'CR')) || ~isempty(findstr(filename, 'YR') > 0) || ~isempty(findstr(filename, 'PR_U'))|| ~isempty(findstr(filename, 'PR_D')))
|
||||||
|
continue;
|
||||||
|
end
|
||||||
|
|
||||||
|
% ignore labels from non requested users
|
||||||
|
if(isempty(strmatch(filename(1:5), recs)))
|
||||||
|
continue;
|
||||||
|
end
|
||||||
|
|
||||||
|
filenames = cat(1, filenames, filename);
|
||||||
|
|
||||||
|
aus_str = d{2}(3:end);
|
||||||
|
|
||||||
|
% decode the AU data
|
||||||
|
aus_c = strsplit(aus_str, '+');
|
||||||
|
|
||||||
|
curr_img_au = zeros(1, 80);
|
||||||
|
|
||||||
|
for i=1:numel(aus_c)
|
||||||
|
|
||||||
|
if(aus_c{i} == '0')
|
||||||
|
|
||||||
|
continue
|
||||||
|
end
|
||||||
|
|
||||||
|
intensity = -1;
|
||||||
|
|
||||||
|
intensity_str = aus_c{i}(end);
|
||||||
|
if(intensity_str == 'A')
|
||||||
|
intensity = 1;
|
||||||
|
elseif(intensity_str == 'B')
|
||||||
|
intensity = 2;
|
||||||
|
elseif(intensity_str == 'C')
|
||||||
|
intensity = 3;
|
||||||
|
elseif(intensity_str == 'D')
|
||||||
|
intensity = 4;
|
||||||
|
elseif(intensity_str == 'E')
|
||||||
|
intensity = 5;
|
||||||
|
end
|
||||||
|
|
||||||
|
if(~isempty(str2num(aus_c{i}(1))))
|
||||||
|
if(intensity ~= -1)
|
||||||
|
num = str2num(aus_c{i}(1:end-1));
|
||||||
|
else
|
||||||
|
num = str2num(aus_c{i}(1:end));
|
||||||
|
intensity = 3; % if no intensity given just assume 3
|
||||||
|
end
|
||||||
|
else
|
||||||
|
if(intensity ~= -1)
|
||||||
|
num = str2num(aus_c{i}(2:end-1));
|
||||||
|
else
|
||||||
|
num = str2num(aus_c{i}(2:end));
|
||||||
|
intensity = 3; % if no intensity given just assume 3
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
curr_img_au(1, num) = intensity;
|
||||||
|
end
|
||||||
|
all_aus = cat(1, all_aus, curr_img_au);
|
||||||
|
valid = cat(1, valid, [true]);
|
||||||
|
|
||||||
|
id = id + 1;
|
||||||
|
|
||||||
|
end
|
||||||
|
%aus_bosph = dlmread(, '->', 3, 0);
|
||||||
|
fclose(fid);
|
||||||
|
|
||||||
|
valid_ids = logical(valid);
|
||||||
|
labels = all_aus(:, aus);
|
||||||
|
end
|
||||||
|
|
|
@ -0,0 +1,32 @@
|
||||||
|
clear
|
||||||
|
features_exe = '"..\..\..\x64\Release\FeatureExtraction.exe"';
|
||||||
|
|
||||||
|
bosph_loc = 'D:\Datasets\Bosphorus\BosphorusDB\BosphorusDB/';
|
||||||
|
|
||||||
|
out_loc = 'D:\Datasets\face_datasets/';
|
||||||
|
|
||||||
|
% Go two levels deep
|
||||||
|
bosph_dirs = dir([bosph_loc, '/bs*']);
|
||||||
|
|
||||||
|
for f1=1:numel(bosph_dirs)
|
||||||
|
|
||||||
|
name = [bosph_dirs(f1).name];
|
||||||
|
|
||||||
|
curr_vids = dir([bosph_loc, '/' name, '/*.png']);
|
||||||
|
|
||||||
|
parfor i=1:numel(curr_vids)
|
||||||
|
command = features_exe;
|
||||||
|
input_file = [bosph_loc, '/' name '/', curr_vids(i).name];
|
||||||
|
[~, curr_name, ~] = fileparts(curr_vids(i).name);
|
||||||
|
output_file = [out_loc, '/hog_aligned_rigid_b/', curr_name, '/'];
|
||||||
|
|
||||||
|
output_hog = [out_loc, '/hog_aligned_rigid_b/',curr_name '.hog'];
|
||||||
|
output_params = [out_loc, '/model_params_b/', curr_name '.txt'];
|
||||||
|
|
||||||
|
command = cat(2, command, [' -rigid -f "' input_file '" -simalign "' output_file '" -simscale 0.7 -simsize 112 ']);
|
||||||
|
command = cat(2, command, [' -hogalign "' output_hog '"' ' -of "' output_params ]);
|
||||||
|
command = cat(2, command, ['" -no2Dfp -no3Dfp -noAUs -noPose -noGaze -q ']);
|
||||||
|
dos(command);
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
|
@ -9,10 +9,6 @@ out_loc = 'D:\Datasets\face_datasets/';
|
||||||
unbc_dirs = dir(unbc_loc);
|
unbc_dirs = dir(unbc_loc);
|
||||||
unbc_dirs = unbc_dirs(3:end);
|
unbc_dirs = unbc_dirs(3:end);
|
||||||
|
|
||||||
if(~exist([out_loc, '/clm_params/'], 'file'))
|
|
||||||
mkdir([out_loc, '/clm_params/']);
|
|
||||||
end
|
|
||||||
|
|
||||||
parfor f1=1:numel(unbc_dirs)
|
parfor f1=1:numel(unbc_dirs)
|
||||||
|
|
||||||
unbc_dirs_level_2 = dir([unbc_loc, unbc_dirs(f1).name]);
|
unbc_dirs_level_2 = dir([unbc_loc, unbc_dirs(f1).name]);
|
||||||
|
|
21
matlab_version/AU_training/data extraction/find_Bosphorus.m
Normal file
21
matlab_version/AU_training/data extraction/find_Bosphorus.m
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
if(exist('D:/Datasets/Bosphorus/', 'file'))
|
||||||
|
Bosphorus_dir = 'D:\Datasets\Bosphorus/';
|
||||||
|
else
|
||||||
|
fprintf('Bosphorus dataset location not found (or not defined)\n');
|
||||||
|
end
|
||||||
|
|
||||||
|
hog_data_dir = ['D:\Datasets\face_datasets'];
|
||||||
|
|
||||||
|
all_recs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
|
||||||
|
all_recs_mat = cat(1, all_recs.name);
|
||||||
|
all_recs = cell(numel(all_recs), 1);
|
||||||
|
|
||||||
|
for i=1:size(all_recs_mat,1)
|
||||||
|
|
||||||
|
all_recs{i} = all_recs_mat(i,:);
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
devel_recs = all_recs(1:3:end);
|
||||||
|
train_recs = setdiff(all_recs, devel_recs);
|
||||||
|
|
|
@ -75,9 +75,21 @@ labels_devel = cat(1, labels_devel{:});
|
||||||
|
|
||||||
valid_ids_test = valid_ids_devel_hog;
|
valid_ids_test = valid_ids_devel_hog;
|
||||||
|
|
||||||
% normalise the data
|
% Peforming zone specific masking
|
||||||
load(pca_file);
|
if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_upper.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_lower.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train == 9) % Central face model
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_rigid.mat';
|
||||||
|
load(pca_file);
|
||||||
|
end
|
||||||
|
|
||||||
PC_n = zeros(size(PC)+size(train_geom_data, 2));
|
PC_n = zeros(size(PC)+size(train_geom_data, 2));
|
||||||
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
||||||
PC_n(size(PC,1)+1:end, size(PC,2)+1:end) = eye(size(train_geom_data, 2));
|
PC_n(size(PC,1)+1:end, size(PC,2)+1:end) = eye(size(train_geom_data, 2));
|
||||||
|
|
|
@ -71,9 +71,21 @@ devel_appearance_data = cat(2, devel_appearance_data, devel_geom_data);
|
||||||
|
|
||||||
valid_ids_devel = valid_ids_devel_hog;
|
valid_ids_devel = valid_ids_devel_hog;
|
||||||
|
|
||||||
% normalise the data
|
% Peforming zone specific masking
|
||||||
load(pca_file);
|
if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_upper.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_lower.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train == 9) % Central face model
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_rigid.mat';
|
||||||
|
load(pca_file);
|
||||||
|
end
|
||||||
|
|
||||||
PC_n = zeros(size(PC)+size(train_geom_data, 2));
|
PC_n = zeros(size(PC)+size(train_geom_data, 2));
|
||||||
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
||||||
PC_n(size(PC,1)+1:end, size(PC,2)+1:end) = eye(size(train_geom_data, 2));
|
PC_n(size(PC,1)+1:end, size(PC,2)+1:end) = eye(size(train_geom_data, 2));
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
function [data_train, labels_train, vid_ids_train_string, data_devel, labels_devel, vid_ids_devel_string, raw_devel, PC, means_norm, stds_norm, success_devel] = ...
|
function [data_train, labels_train, vid_ids_train_string, data_devel, labels_devel, vid_ids_devel_string, raw_devel, PC, means_norm, stds_norm, success_devel] = ...
|
||||||
Prepare_HOG_AU_data_generic_intensity(train_users, devel_users, au_train, bp4d_dir, hog_data_dir, pca_file)
|
Prepare_HOG_AU_data_generic_intensity(train_users, devel_users, au_train, bp4d_dir, hog_data_dir)
|
||||||
|
|
||||||
%%
|
%%
|
||||||
addpath(genpath('../data extraction/'));
|
addpath(genpath('../data extraction/'));
|
||||||
|
@ -76,8 +76,20 @@ labels_devel = cat(1, labels_devel{:});
|
||||||
|
|
||||||
success_devel = valid_ids_devel;
|
success_devel = valid_ids_devel;
|
||||||
|
|
||||||
% normalise the data
|
% Peforming zone specific masking
|
||||||
load(pca_file);
|
if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_upper.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_lower.mat';
|
||||||
|
load(pca_file);
|
||||||
|
elseif(au_train == 9) % Central face model
|
||||||
|
% normalise the data
|
||||||
|
pca_file = '../../pca_generation/generic_face_rigid.mat';
|
||||||
|
load(pca_file);
|
||||||
|
end
|
||||||
|
|
||||||
PC_n = zeros(size(PC)+size(devel_geom_data, 2));
|
PC_n = zeros(size(PC)+size(devel_geom_data, 2));
|
||||||
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
PC_n(1:size(PC,1), 1:size(PC,2)) = PC;
|
||||||
|
|
|
@ -14,10 +14,10 @@ hyperparams.p = 10.^(-2);
|
||||||
hyperparams.validate_params = {'c', 'p'};
|
hyperparams.validate_params = {'c', 'p'};
|
||||||
|
|
||||||
% Set the training function
|
% Set the training function
|
||||||
svr_train = @svr_train_linear_shift_fancy;
|
svr_train = @svr_train_linear_shift;
|
||||||
|
|
||||||
% Set the test function (the first output will be used for validation)
|
% Set the test function (the first output will be used for validation)
|
||||||
svr_test = @svr_test_linear_shift_fancy;
|
svr_test = @svr_test_linear_shift;
|
||||||
|
|
||||||
pca_loc = '../../pca_generation/generic_face_rigid.mat';
|
pca_loc = '../../pca_generation/generic_face_rigid.mat';
|
||||||
|
|
||||||
|
|
|
@ -14,10 +14,10 @@ hyperparams.p = 10.^(-2);
|
||||||
hyperparams.validate_params = {'c', 'p'};
|
hyperparams.validate_params = {'c', 'p'};
|
||||||
|
|
||||||
% Set the training function
|
% Set the training function
|
||||||
svr_train = @svr_train_linear_shift_fancy;
|
svr_train = @svr_train_linear_shift;
|
||||||
|
|
||||||
% Set the test function (the first output will be used for validation)
|
% Set the test function (the first output will be used for validation)
|
||||||
svr_test = @svr_test_linear_shift_fancy;
|
svr_test = @svr_test_linear_shift;
|
||||||
|
|
||||||
pca_loc = '../../pca_generation/generic_face_rigid.mat';
|
pca_loc = '../../pca_generation/generic_face_rigid.mat';
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue