More work on AU - WIP

This commit is contained in:
Tadas Baltrusaitis 2016-06-14 17:55:16 -04:00
parent 65e91da3a6
commit 146dcd5e5b
676 changed files with 2971 additions and 297 deletions

1
.gitignore vendored
View file

@ -27,3 +27,4 @@ matlab_runners/Action Unit Experiments/out_SEMAINE/
exe/FeatureExtraction/out_bp4d/ exe/FeatureExtraction/out_bp4d/
x64/Debug/ x64/Debug/
matlab_runners/Action Unit Experiments/out_unbc/ matlab_runners/Action Unit Experiments/out_unbc/
matlab_runners/Action Unit Experiments/out_bosph/

View file

@ -188,26 +188,64 @@ void write_out_pose_landmarks(const string& outfeatures, const cv::Mat_<double>&
} }
} }
void write_out_landmarks(const string& outfeatures, const LandmarkDetector::CLNF& clnf_model) void write_out_landmarks(const string& outfeatures, const LandmarkDetector::CLNF& clnf_model, const cv::Vec6d& pose, const cv::Point3f& gaze0, const cv::Point3f& gaze1, std::vector<std::pair<std::string, double>> au_intensities, std::vector<std::pair<std::string, double>> au_occurences)
{ {
create_directory_from_file(outfeatures); create_directory_from_file(outfeatures);
std::ofstream featuresFile; std::ofstream featuresFile;
featuresFile.open(outfeatures); featuresFile.open(outfeatures);
if(featuresFile.is_open()) if (featuresFile.is_open())
{ {
int n = clnf_model.patch_experts.visibilities[0][0].rows; int n = clnf_model.patch_experts.visibilities[0][0].rows;
featuresFile << "version: 1" << endl; featuresFile << "version: 1" << endl;
featuresFile << "npoints: " << n << endl; featuresFile << "npoints: " << n << endl;
featuresFile << "{" << endl; featuresFile << "{" << endl;
for (int i = 0; i < n; ++ i) for (int i = 0; i < n; ++i)
{ {
// Use matlab format, so + 1 // Use matlab format, so + 1
featuresFile << clnf_model.detected_landmarks.at<double>(i) + 1 << " " << clnf_model.detected_landmarks.at<double>(i+n) + 1 << endl; featuresFile << clnf_model.detected_landmarks.at<double>(i) + 1 << " " << clnf_model.detected_landmarks.at<double>(i + n) + 1 << endl;
} }
featuresFile << "}" << endl; featuresFile << "}" << endl;
// Do the pose and eye gaze if present as well
featuresFile << "pose: eul_x, eul_y, eul_z: " << endl;
featuresFile << "{" << endl;
featuresFile << pose[3] << " " << pose[4] << " " << pose[5] << endl;
featuresFile << "}" << endl;
// Do the pose and eye gaze if present as well
featuresFile << "gaze: dir_x_1, dir_y_1, dir_z_1, dir_x_2, dir_y_2, dir_z_2: " << endl;
featuresFile << "{" << endl;
featuresFile << gaze0.x << " " << gaze0.y << " " << gaze0.z << " " << gaze1.x << " " << gaze1.y << " " << gaze1.z << endl;
featuresFile << "}" << endl;
// Do the au intensities
featuresFile << "au intensities: " << au_intensities.size() << endl;
featuresFile << "{" << endl;
for (int i = 0; i < au_intensities.size(); ++i)
{
// Use matlab format, so + 1
featuresFile << au_intensities[i].first << " " << au_intensities[i].second << endl;
}
featuresFile << "}" << endl;
// Do the au occurences
featuresFile << "au occurences: " << au_occurences.size() << endl;
featuresFile << "{" << endl;
for (int i = 0; i < au_occurences.size(); ++i)
{
// Use matlab format, so + 1
featuresFile << au_occurences[i].first << " " << au_occurences[i].second << endl;
}
featuresFile << "}" << endl;
featuresFile.close();
} }
} }
@ -315,6 +353,45 @@ int main (int argc, char **argv)
cv::CascadeClassifier classifier(det_parameters.face_detector_location); cv::CascadeClassifier classifier(det_parameters.face_detector_location);
dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector(); dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector();
// Loading the AU prediction models
string au_loc = "AU_predictors/AU_all_static.txt";
if (!boost::filesystem::exists(boost::filesystem::path(au_loc)))
{
boost::filesystem::path loc = boost::filesystem::path(arguments[0]).parent_path() / au_loc;
if (boost::filesystem::exists(loc))
{
au_loc = loc.string();
}
else
{
cout << "Can't find AU prediction files, exiting" << endl;
return 0;
}
}
// Used for image masking for AUs
string tri_loc;
if (boost::filesystem::exists(boost::filesystem::path("model/tris_68_full.txt")))
{
std::ifstream triangulation_file("model/tris_68_full.txt");
tri_loc = "model/tris_68_full.txt";
}
else
{
boost::filesystem::path loc = boost::filesystem::path(arguments[0]).parent_path() / "model/tris_68_full.txt";
tri_loc = loc.string();
if (!exists(loc))
{
cout << "Can't find triangulation files, exiting" << endl;
return 0;
}
}
FaceAnalysis::FaceAnalyser face_analyser(vector<cv::Vec3d>(), 0.7, 112, 112, au_loc, tri_loc);
bool visualise = !det_parameters.quiet_mode; bool visualise = !det_parameters.quiet_mode;
// Do some image loading // Do some image loading
@ -396,6 +473,8 @@ int main (int argc, char **argv)
} }
auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model, false);
// Writing out the detected landmarks (in an OS independent manner) // Writing out the detected landmarks (in an OS independent manner)
if(!output_landmark_locations.empty()) if(!output_landmark_locations.empty())
{ {
@ -412,7 +491,7 @@ int main (int argc, char **argv)
boost::filesystem::path fname = out_feat_path.filename().replace_extension(""); boost::filesystem::path fname = out_feat_path.filename().replace_extension("");
boost::filesystem::path ext = out_feat_path.extension(); boost::filesystem::path ext = out_feat_path.extension();
string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string(); string outfeatures = dir.string() + preferredSlash + fname.string() + string(name) + ext.string();
write_out_landmarks(outfeatures, clnf_model); write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, ActionUnits.first, ActionUnits.second);
} }
if (!output_pose_locations.empty()) if (!output_pose_locations.empty())
@ -503,11 +582,13 @@ int main (int argc, char **argv)
FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false); FaceAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false);
} }
auto ActionUnits = face_analyser.PredictStaticAUs(read_image, clnf_model, false);
// Writing out the detected landmarks // Writing out the detected landmarks
if(!output_landmark_locations.empty()) if(!output_landmark_locations.empty())
{ {
string outfeatures = output_landmark_locations.at(i); string outfeatures = output_landmark_locations.at(i);
write_out_landmarks(outfeatures, clnf_model); write_out_landmarks(outfeatures, clnf_model, headPose, gazeDirection0, gazeDirection1, ActionUnits.first, ActionUnits.second);
} }
// Writing out the detected landmarks // Writing out the detected landmarks

View file

@ -324,7 +324,7 @@ int main (int argc, char **argv)
// Used for image masking // Used for image masking
cv::Mat_<int> triangulation; cv::Mat_<int> triangulation;//TODO rem?
string tri_loc; string tri_loc;
if(boost::filesystem::exists(path("model/tris_68_full.txt"))) if(boost::filesystem::exists(path("model/tris_68_full.txt")))
{ {

View file

@ -1,20 +1,18 @@
svr_disfa/AU_1_static.dat AU01 svm_combined/AU_1_dynamic.dat AU01
svr_disfa/AU_2_dyn.dat AU02 svm_combined/AU_2_dynamic.dat AU02
svr_disfa/AU_4_static.dat AU04 svm_combined/AU_4_static.dat AU04
svm_combined/AU_4_dynamic_combined_all.dat AU04 svm_combined/AU_5_static.dat AU05
svr_disfa/AU_5_dyn.dat AU05 svm_combined/AU_6_static.dat AU06
svr_combined/AU_6_static_intensity_combined.dat AU06 svm_combined/AU_7_static.dat AU07
svr_disfa/AU_9_dyn.dat AU09 svm_combined/AU_9_dynamic.dat AU09
svr_bp4d/AU_10_static_intensity.dat AU10 svm_combined/AU_10_static.dat AU10
svm_combined/AU_12_static_combined_all.dat AU12 svm_combined/AU_12_static.dat AU12
svr_combined/AU_12_static_intensity_combined.dat AU12 svm_combined/AU_14_static.dat AU14
svr_bp4d/AU_14_static_intensity.dat AU14 svm_combined/AU_15_dynamic.dat AU15
svr_disfa/AU_15_dyn.dat AU15 svm_combined/AU_17_dynamic.dat AU17
svm_combined/AU_15_dynamic_combined_all.dat AU15 svm_combined/AU_20_dynamic.dat AU20
svr_combined/AU_17_static_intensity_combined.dat AU17 svm_combined/AU_23_static.dat AU23
svr_disfa/AU_20_dyn.dat AU20 svm_combined/AU_25_dynamic.dat AU25
svm_bp4d/AU_23_static.dat AU23 svm_combined/AU_26_dynamic.dat AU26
svr_disfa/AU_25_static.dat AU25 svm_combined/AU_28_static.dat AU28
svr_disfa/AU_26_dyn.dat AU26 svm_combined/AU_45_dynamic.dat AU45
svm_semaine/AU_28_static.dat AU28
svm_semaine/AU_45_dynamic.dat AU45

View file

@ -1,23 +1,35 @@
svr_disfa/AU_1_static.dat AU01 svm_combined/AU_1_static.dat AU01
svr_disfa/AU_2_static.dat AU02 svm_combined/AU_2_static.dat AU02
svr_disfa/AU_4_static.dat AU04 svm_combined/AU_4_static.dat AU04
svm_combined/AU_4_static_combined_all.dat AU04 svm_combined/AU_5_static.dat AU05
svr_disfa/AU_5_static.dat AU05 svm_combined/AU_6_static.dat AU06
svr_combined/AU_6_static_intensity_combined.dat AU06 svm_combined/AU_7_static.dat AU07
svm_bp4d/AU_7_static.dat AU07 svm_combined/AU_9_static.dat AU09
svr_disfa/AU_9_static.dat AU09 svm_combined/AU_10_static.dat AU10
svr_bp4d/AU_10_static_intensity.dat AU10 svm_combined/AU_12_static.dat AU12
svm_combined/AU_12_static_combined_all.dat AU12 svm_combined/AU_14_static.dat AU14
svr_combined/AU_12_static_intensity_combined.dat AU12 svm_combined/AU_15_static.dat AU15
svr_bp4d/AU_14_static_intensity.dat AU14 svm_combined/AU_17_static.dat AU17
svr_disfa/AU_15_static.dat AU15 svm_combined/AU_20_static.dat AU20
svm_combined/AU_15_static_combined_all.dat AU15 svm_combined/AU_23_static.dat AU23
svr_combined/AU_17_static_intensity_combined.dat AU17 svm_combined/AU_25_static.dat AU25
svm_combined/AU_17_static_combined_all.dat AU17 svm_combined/AU_26_static.dat AU26
svr_disfa/AU_20_static.dat AU20 svm_combined/AU_28_static.dat AU28
svm_bp4d/AU_23_static.dat AU23 svm_combined/AU_45_static.dat AU45
svr_disfa/AU_25_static.dat AU25 svr_combined/AU_1_static_intensity_comb.dat AU01
svm_combined/AU_25_static_combined_all.dat AU25 svr_combined/AU_2_static_intensity_comb.dat AU02
svr_disfa/AU_26_static.dat AU26 svr_combined/AU_4_static_intensity_comb.dat AU04
svm_semaine/AU_28_static.dat AU28 svr_combined/AU_5_static_intensity.dat AU05
svm_semaine/AU_45_static.dat AU45 svr_combined/AU_6_static_intensity_comb.dat AU06
svr_combined/AU_7_static_intensity_comb.dat AU07
svr_combined/AU_9_static_intensity.dat AU09
svr_combined/AU_10_static_intensity_comb.dat AU10
svr_combined/AU_12_static_intensity_comb.dat AU12
svr_combined/AU_14_static_intensity.dat AU14
svr_combined/AU_15_static_intensity_comb.dat AU15
svr_combined/AU_17_static_intensity_comb.dat AU17
svr_combined/AU_20_static_intensity.dat AU20
svr_combined/AU_23_static_intensity_comb.dat AU23
svr_combined/AU_25_static_intensity.dat AU25
svr_combined/AU_26_static_intensity_comb.dat AU26
svr_combined/AU_45_static_intensity_comb.dat AU45

View file

@ -99,6 +99,10 @@ public:
std::vector<std::pair<std::string, double>> GetCurrentAUsReg() const; // AU intensity std::vector<std::pair<std::string, double>> GetCurrentAUsReg() const; // AU intensity
std::vector<std::pair<std::string, double>> GetCurrentAUsCombined() const; // Both presense and intensity std::vector<std::pair<std::string, double>> GetCurrentAUsCombined() const; // Both presense and intensity
// A standalone call for predicting AUs from a static image, the first element in the pair represents occurence the second intensity
// This call is useful for detecting action units in images
std::pair<std::vector<std::pair<string, double>>, std::vector<std::pair<string, double>>> PredictStaticAUs(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf, bool visualise = true);
void Reset(); void Reset();
void GetLatestHOG(cv::Mat_<double>& hog_descriptor, int& num_rows, int& num_cols); void GetLatestHOG(cv::Mat_<double>& hog_descriptor, int& num_rows, int& num_cols);
@ -123,8 +127,8 @@ public:
std::vector<bool> GetDynamicAUReg() const; // Intensity std::vector<bool> GetDynamicAUReg() const; // Intensity
void ExtractAllPredictionsOfflineReg(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps); void ExtractAllPredictionsOfflineReg(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps); void ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
private: private:

View file

@ -303,6 +303,59 @@ void FaceAnalyser::ExtractCurrentMedians(vector<cv::Mat>& hog_medians, vector<cv
} }
} }
std::pair<std::vector<std::pair<string, double>>, std::vector<std::pair<string, double>>> FaceAnalyser::PredictStaticAUs(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf, bool visualise)
{
// First align the face
AlignFaceMask(aligned_face, frame, clnf, triangulation, true, align_scale, align_width, align_height);
// Extract HOG descriptor from the frame and convert it to a useable format
cv::Mat_<double> hog_descriptor;
Extract_FHOG_descriptor(hog_descriptor, aligned_face, this->num_hog_rows, this->num_hog_cols);
// Store the descriptor
hog_desc_frame = hog_descriptor;
cv::Vec3d curr_orient(clnf.params_global[1], clnf.params_global[2], clnf.params_global[3]);
int orientation_to_use = GetViewId(this->head_orientations, curr_orient);
// Geom descriptor and its median
geom_descriptor_frame = clnf.params_local.t();
// Stack with the actual feature point locations (without mean)
cv::Mat_<double> locs = clnf.pdm.princ_comp * geom_descriptor_frame.t();
cv::hconcat(locs.t(), geom_descriptor_frame.clone(), geom_descriptor_frame);
// First convert the face image to double representation as a row vector
cv::Mat_<uchar> aligned_face_cols(1, aligned_face.cols * aligned_face.rows * aligned_face.channels(), aligned_face.data, 1);
cv::Mat_<double> aligned_face_cols_double;
aligned_face_cols.convertTo(aligned_face_cols_double, CV_64F);
// Visualising the median HOG
if (visualise)
{
FaceAnalysis::Visualise_FHOG(hog_descriptor, num_hog_rows, num_hog_cols, hog_descriptor_visualisation);
}
// Perform AU prediction
auto AU_predictions_intensity = PredictCurrentAUs(orientation_to_use);
auto AU_predictions_occurence = PredictCurrentAUsClass(orientation_to_use);
// Make sure intensity is within range (0-5)
for (size_t au = 0; au < AU_predictions_intensity.size(); ++au)
{
if (AU_predictions_intensity[au].second < 0)
AU_predictions_intensity[au].second = 0;
if (AU_predictions_intensity[au].second > 5)
AU_predictions_intensity[au].second = 5;
}
return std::pair<std::vector<std::pair<std::string, double>>, std::vector<std::pair<std::string, double>>>(AU_predictions_intensity, AU_predictions_occurence);
}
void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, double timestamp_seconds, bool online, bool visualise) void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, double timestamp_seconds, bool online, bool visualise)
{ {
@ -607,7 +660,6 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
confidences = this->confidences; confidences = this->confidences;
successes = this->valid_preds; successes = this->valid_preds;
// TODO only if the video is long enough or there is enough range? Compare stdev of BP4D and this
for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter) for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter)
{ {
vector<double> au_good; vector<double> au_good;
@ -665,6 +717,28 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
} }
} }
// Perform some prediction smoothing
for (auto au_iter = au_predictions.begin(); au_iter != au_predictions.end(); ++au_iter)
{
string au_name = au_iter->first;
// Perform a moving average of 3 frames
int window_size = 3;
vector<double> au_vals_tmp = au_iter->second;
for (size_t i = (window_size - 1) / 2; i < au_iter->second.size() - (window_size - 1) / 2; ++i)
{
double sum = 0;
for (int w = -(window_size - 1) / 2; w < (window_size - 1) / 2; ++w)
{
sum += au_vals_tmp[i + w];
}
sum = sum / window_size;
au_iter->second[i] = sum;
}
}
} }

View file

@ -1,11 +1,11 @@
AU1 class, Precision - 0.426, Recall - 0.389, F1 - 0.406 AU1 class, Precision - 0.470, Recall - 0.527, F1 - 0.497
AU2 class, Precision - 0.326, Recall - 0.366, F1 - 0.345 AU2 class, Precision - 0.371, Recall - 0.376, F1 - 0.373
AU4 class, Precision - 0.465, Recall - 0.441, F1 - 0.453 AU4 class, Precision - 0.422, Recall - 0.570, F1 - 0.485
AU6 class, Precision - 0.759, Recall - 0.760, F1 - 0.760 AU6 class, Precision - 0.845, Recall - 0.698, F1 - 0.765
AU7 class, Precision - 0.741, Recall - 0.660, F1 - 0.698 AU7 class, Precision - 0.719, Recall - 0.766, F1 - 0.742
AU10 class, Precision - 0.863, Recall - 0.813, F1 - 0.837 AU10 class, Precision - 0.811, Recall - 0.801, F1 - 0.806
AU12 class, Precision - 0.882, Recall - 0.846, F1 - 0.864 AU12 class, Precision - 0.902, Recall - 0.780, F1 - 0.837
AU14 class, Precision - 0.575, Recall - 0.776, F1 - 0.660 AU14 class, Precision - 0.513, Recall - 0.874, F1 - 0.647
AU15 class, Precision - 0.348, Recall - 0.538, F1 - 0.423 AU15 class, Precision - 0.406, Recall - 0.431, F1 - 0.418
AU17 class, Precision - 0.575, Recall - 0.595, F1 - 0.585 AU17 class, Precision - 0.638, Recall - 0.615, F1 - 0.626
AU23 class, Precision - 0.395, Recall - 0.514, F1 - 0.447 AU23 class, Precision - 0.357, Recall - 0.507, F1 - 0.419

View file

@ -0,0 +1,17 @@
AU1 class, Precision - 0.371, Recall - 0.756, F1 - 0.498
AU2 class, Precision - 0.303, Recall - 0.829, F1 - 0.443
AU4 class, Precision - 0.552, Recall - 0.856, F1 - 0.671
AU5 class, Precision - 0.361, Recall - 0.878, F1 - 0.511
AU6 class, Precision - 0.348, Recall - 0.817, F1 - 0.488
AU7 class, Precision - 0.819, Recall - 0.717, F1 - 0.765
AU9 class, Precision - 0.361, Recall - 0.946, F1 - 0.522
AU10 class, Precision - 0.336, Recall - 0.780, F1 - 0.469
AU12 class, Precision - 0.687, Recall - 0.856, F1 - 0.762
AU14 class, Precision - 0.190, Recall - 0.863, F1 - 0.311
AU15 class, Precision - 0.156, Recall - 0.844, F1 - 0.263
AU17 class, Precision - 0.284, Recall - 0.866, F1 - 0.428
AU20 class, Precision - 0.130, Recall - 0.930, F1 - 0.228
AU23 class, Precision - 0.103, Recall - 0.837, F1 - 0.183
AU25 class, Precision - 0.839, Recall - 0.829, F1 - 0.834
AU26 class, Precision - 0.363, Recall - 0.794, F1 - 0.498
AU45 class, Precision - 0.377, Recall - 0.842, F1 - 0.521

View file

@ -1,6 +1,6 @@
AU2 class, Precision - 0.489, Recall - 0.536, F1 - 0.511 AU2 class, Precision - 0.366, Recall - 0.718, F1 - 0.484
AU12 class, Precision - 0.521, Recall - 0.751, F1 - 0.615 AU12 class, Precision - 0.434, Recall - 0.790, F1 - 0.560
AU17 class, Precision - 0.408, Recall - 0.486, F1 - 0.444 AU17 class, Precision - 0.129, Recall - 0.830, F1 - 0.223
AU25 class, Precision - 0.410, Recall - 0.542, F1 - 0.467 AU25 class, Precision - 0.362, Recall - 0.580, F1 - 0.446
AU28 class, Precision - 0.493, Recall - 0.398, F1 - 0.441 AU28 class, Precision - 0.362, Recall - 0.514, F1 - 0.425
AU45 class, Precision - 0.223, Recall - 0.723, F1 - 0.341 AU45 class, Precision - 0.295, Recall - 0.571, F1 - 0.389

View file

@ -0,0 +1,103 @@
function [ labels, valid_ids, filenames ] = extract_Bosphorus_labels( Bosphorus_dir, recs, aus )
%EXTRACT_SEMAINE_LABELS Summary of this function goes here
% Detailed explanation goes here
% Ignoring rare ones or ones that don't overlap with other datasets
aus_Bosphorus = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 43];
aus(aus == 45) = 43;
%%
fid = fopen([Bosphorus_dir, './facscodes/facscodes.lst']);
% Skipping the header
fgetl(fid);
fgetl(fid);
% Starting to read
data = fgetl(fid);
all_aus = [];
valid = [];
id = 1;
filenames = {};
while ischar(data)
d = strsplit(data, '->');
data = fgetl(fid);
filename = strtrim(d{1});
% Skip extreme poses
if(~isempty(findstr(filename, 'CR')) || ~isempty(findstr(filename, 'YR') > 0) || ~isempty(findstr(filename, 'PR_U'))|| ~isempty(findstr(filename, 'PR_D')))
continue;
end
% ignore labels from non requested users
if(isempty(strmatch(filename(1:5), recs)))
continue;
end
filenames = cat(1, filenames, filename);
aus_str = d{2}(3:end);
% decode the AU data
aus_c = strsplit(aus_str, '+');
curr_img_au = zeros(1, 80);
for i=1:numel(aus_c)
if(aus_c{i} == '0')
continue
end
intensity = -1;
intensity_str = aus_c{i}(end);
if(intensity_str == 'A')
intensity = 1;
elseif(intensity_str == 'B')
intensity = 2;
elseif(intensity_str == 'C')
intensity = 3;
elseif(intensity_str == 'D')
intensity = 4;
elseif(intensity_str == 'E')
intensity = 5;
end
if(~isempty(str2num(aus_c{i}(1))))
if(intensity ~= -1)
num = str2num(aus_c{i}(1:end-1));
else
num = str2num(aus_c{i}(1:end));
intensity = 3; % if no intensity given just assume 3
end
else
if(intensity ~= -1)
num = str2num(aus_c{i}(2:end-1));
else
num = str2num(aus_c{i}(2:end));
intensity = 3; % if no intensity given just assume 3
end
end
curr_img_au(1, num) = intensity;
end
all_aus = cat(1, all_aus, curr_img_au);
valid = cat(1, valid, [true]);
id = id + 1;
end
%aus_bosph = dlmread(, '->', 3, 0);
fclose(fid);
valid_ids = logical(valid);
labels = all_aus(:, aus);
end

View file

@ -0,0 +1,21 @@
if(exist('D:/Datasets/Bosphorus/', 'file'))
Bosphorus_dir = 'D:\Datasets\Bosphorus/';
else
fprintf('Bosphorus dataset location not found (or not defined)\n');
end
hog_data_dir = ['D:\Datasets\face_datasets'];
all_recs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
all_recs_mat = cat(1, all_recs.name);
all_recs = cell(numel(all_recs), 1);
for i=1:size(all_recs_mat,1)
all_recs{i} = all_recs_mat(i,:);
end
devel_recs = all_recs(1:3:end);
train_recs = setdiff(all_recs, devel_recs);

View file

@ -13,32 +13,56 @@ executable = '"../../x64/Release/FeatureExtraction.exe"';
bp4d_dirs = {'F002', 'F004', 'F006', 'F008', 'F010', 'F012', 'F014', 'F016', 'F018', 'F020', 'F022', 'M002', 'M004', 'M006', 'M008', 'M010', 'M012', 'M014', 'M016', 'M018'}; bp4d_dirs = {'F002', 'F004', 'F006', 'F008', 'F010', 'F012', 'F014', 'F016', 'F018', 'F020', 'F022', 'M002', 'M004', 'M006', 'M008', 'M010', 'M012', 'M014', 'M016', 'M018'};
parfor f1=1:numel(bp4d_dirs) %% Before running BP4D convert it to a smaller format and move each person to the same directory
% This is done so that dynamic models would work on it as otherwise the
% clips are a bit too short
if(isdir([bp4d_loc, bp4d_dirs{f1}])) new_bp4d_dirs = {};
bp4d_2_dirs = dir([bp4d_loc, bp4d_dirs{f1}]); % This might take some time
bp4d_2_dirs = bp4d_2_dirs(3:end); for i = 1:numel(bp4d_dirs)
dirs = dir([bp4d_loc, '/', bp4d_dirs{i}, '/T*']);
tmp_dir = [bp4d_loc, '/', bp4d_dirs{i}, '/tmp/'];
new_bp4d_dirs = cat(1, new_bp4d_dirs, tmp_dir);
f1_dir = bp4d_dirs{f1}; if(~exist(tmp_dir, 'file'))
mkdir(tmp_dir);
command = [executable ' -asvid -q -no2Dfp -no3Dfp -noMparams -noPose -noGaze ']; % Move all images and resize them
for d=1:numel(dirs)
for f2=1:numel(bp4d_2_dirs) in_files = dir([bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/*.jpg']);
f2_dir = bp4d_2_dirs(f2).name;
if(isdir([bp4d_loc, bp4d_dirs{f1}]))
curr_vid = [bp4d_loc, f1_dir, '/', f2_dir, '/']; for img_ind=1:numel(in_files)
name = [f1_dir '_' f2_dir]; img_file = [bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/', in_files(img_ind).name];
output_file = [out_loc name '.au.txt']; img = imread(img_file);
img = imresize(img, 0.5);
img_out = [tmp_dir, dirs(d).name, '_', in_files(img_ind).name];
imwrite(img, img_out);
command = cat(2, command, [' -fdir "' curr_vid '" -of "' output_file '"']);
end end
end end
dos(command);
end end
end
%%
parfor f1=1:numel(new_bp4d_dirs)
% TODO rem - attempt a static model
command = [executable ' -asvid -no2Dfp -no3Dfp -noMparams -noPose -noGaze '];
[f,~,~] = fileparts(new_bp4d_dirs{f1});
[f,~,~] = fileparts(f);
[~,f,~] = fileparts(f);
output_file = [out_loc f '.au.txt'];
command = cat(2, command, [' -fdir "' new_bp4d_dirs{f1} '" -of "' output_file '"']);
dos(command);
end end
%% %%
@ -52,7 +76,7 @@ aus_BP4D = [1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23];
labels_gt = cat(1, labels_gt{:}); labels_gt = cat(1, labels_gt{:});
%% Identifying which column IDs correspond to which AU %% Identifying which column IDs correspond to which AU
tab = readtable([out_loc, bp4d_dirs{1}, '_T1.au.txt']); tab = readtable([out_loc, bp4d_dirs{1}, '.au.txt']);
column_names = tab.Properties.VariableNames; column_names = tab.Properties.VariableNames;
% As there are both classes and intensities list and evaluate both of them % As there are both classes and intensities list and evaluate both of them
@ -92,9 +116,13 @@ end
preds_all_class = []; preds_all_class = [];
preds_all_int = []; preds_all_int = [];
for i=1:numel(filenames) for i=1:numel(new_bp4d_dirs)
fname = [out_loc, filenames{i}, '.au.txt']; [f,~,~] = fileparts(new_bp4d_dirs{i});
[f,~,~] = fileparts(f);
[~,f,~] = fileparts(f);
fname = [out_loc, f, '.au.txt'];
preds = dlmread(fname, ',', 1, 0); preds = dlmread(fname, ',', 1, 0);
% Read all of the intensity AUs % Read all of the intensity AUs

View file

@ -0,0 +1,189 @@
% Perform static model prediction using images
clear
addpath('./helpers');
find_Bosphorus;
out_loc = './out_bosph/';
if(~exist(out_loc, 'dir'))
mkdir(out_loc);
end
%%
executable = '"../../x64/Release/FaceLandmarkImg.exe"';
bosph_dirs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
%%
parfor f1=1:numel(bosph_dirs)
command = executable;
input_dir = [Bosphorus_dir, '/BosphorusDB/BosphorusDB/', bosph_dirs(f1).name];
command = cat(2, command, [' -fdir "' input_dir '" -ofdir "' out_loc '"']);
command = cat(2, command, ' -multi_view 1 -wild');
dos(command);
end
%%
aus_Bosph = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 45];
[ labels_gt, valid_ids, filenames] = extract_Bosphorus_labels(Bosphorus_dir, all_recs, aus_Bosph);
%% Read the predicted values
% First read the first file to get the ids and line numbers
% au occurences
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
data = fgetl(fid);
ind = 0;
beg_ind = -1;
end_ind = -1;
aus_det = [];
aus_det_id = [];
while ischar(data)
if(~isempty(findstr(data, 'au occurences:')))
num_occurences = str2num(data(numel('au occurences:')+1:end));
% Skip ahead two lines
data = fgetl(fid);
data = fgetl(fid);
ind = ind + 2;
beg_ind = ind;
end
if(beg_ind ~= -1 && end_ind == -1)
if(~isempty(findstr(data, '}')))
end_ind = ind;
else
d = strsplit(data, ' ');
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
end
end
data = fgetl(fid);
ind = ind + 1;
end
fclose(fid);
%%
labels_pred = zeros(size(labels_gt));
for i=1:numel(filenames)
% Will need to read the relevant AUs only
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
for k=1:beg_ind
data = fgetl(fid);
end
for k=1:num_occurences
data = fgetl(fid);
if(sum(aus_Bosph == aus_det(k))>0)
d = strsplit(data, ' ');
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
end
end
fclose(fid);
end
end
%%
%%
f = fopen('Bosphorus_res_class.txt', 'w');
for au = 1:numel(aus_Bosph)
if(inds_au_int(au) ~= 0)
tp = sum(labels_gt(:,au) == 1 & preds_all_int(:, inds_au_int(au)) >= 1);
fp = sum(labels_gt(:,au) == 0 & preds_all_int(:, inds_au_int(au)) >= 1);
fn = sum(labels_gt(:,au) == 1 & preds_all_int(:, inds_au_int(au)) < 1);
tn = sum(labels_gt(:,au) == 0 & preds_all_int(:, inds_au_int(au)) < 1);
precision = tp./(tp+fp);
recall = tp./(tp+fn);
f1 = 2 * precision .* recall ./ (precision + recall);
fprintf(f, 'AU%d intensity, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_BP4D(au), precision, recall, f1);
end
if(inds_au_class(au) ~= 0)
tp = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 1);
fp = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 1);
fn = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 0);
tn = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 0);
precision = tp./(tp+fp);
recall = tp./(tp+fn);
f1 = 2 * precision .* recall ./ (precision + recall);
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_BP4D(au), precision, recall, f1);
end
end
fclose(f);
%%
addpath('./helpers/');
find_BP4D;
aus_BP4D = [6, 10, 12, 14, 17];
[ labels_gt, valid_ids, vid_ids, filenames] = extract_BP4D_labels_intensity(BP4D_dir_int, devel_recs, aus_BP4D);
labels_gt = cat(1, labels_gt{:});
%% Identifying which column IDs correspond to which AU
tab = readtable([out_loc, bosph_dirs{1}, '_T1.au.txt']);
column_names = tab.Properties.VariableNames;
% As there are both classes and intensities list and evaluate both of them
aus_pred_int = [];
inds_int_in_file = [];
for c=1:numel(column_names)
if(strfind(column_names{c}, '_r') > 0)
aus_pred_int = cat(1, aus_pred_int, int32(str2num(column_names{c}(3:end-2))));
inds_int_in_file = cat(1, inds_int_in_file, c);
end
end
%%
inds_au_int = zeros(size(aus_BP4D));
for ind=1:numel(aus_BP4D)
if(~isempty(find(aus_pred_int==aus_BP4D(ind), 1)))
inds_au_int(ind) = find(aus_pred_int==aus_BP4D(ind));
end
end
preds_all_int = [];
for i=1:numel(filenames)
fname = [out_loc, filenames{i}, '.au.txt'];
preds = dlmread(fname, ',', 1, 0);
% Read all of the intensity AUs
preds_int = preds(:, inds_int_in_file);
preds_all_int = cat(1, preds_all_int, preds_int);
end
%%
f = fopen('BP4D_valid_res_int.txt', 'w');
for au = 1:numel(aus_BP4D)
[ accuracies, F1s, corrs, ccc, rms, classes ] = evaluate_au_prediction_results( preds_all_int(:, inds_au_int(au)), labels_gt(:,au));
fprintf(f, 'AU%d results - corr %.3f, ccc - %.3f\n', aus_BP4D(au), corrs, ccc);
end
fclose(f);

View file

@ -0,0 +1,200 @@
% Perform static model prediction using images
clear
addpath('./helpers');
find_Bosphorus;
out_loc = './out_bosph/';
if(~exist(out_loc, 'dir'))
mkdir(out_loc);
end
%%
executable = '"../../x64/Release/FaceLandmarkImg.exe"';
bosph_dirs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
%%
parfor f1=1:numel(bosph_dirs)
command = executable;
input_dir = [Bosphorus_dir, '/BosphorusDB/BosphorusDB/', bosph_dirs(f1).name];
command = cat(2, command, [' -fdir "' input_dir '" -ofdir "' out_loc '"']);
command = cat(2, command, ' -multi_view 1 -wild');
dos(command);
end
%%
aus_Bosph = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 45];
[ labels_gt, valid_ids, filenames] = extract_Bosphorus_labels(Bosphorus_dir, all_recs, aus_Bosph);
%% Read the predicted values
% First read the first file to get the ids and line numbers
% au occurences
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
data = fgetl(fid);
ind = 0;
beg_ind = -1;
end_ind = -1;
aus_det = [];
aus_det_id = [];
while ischar(data)
if(~isempty(findstr(data, 'au occurences:')))
num_occurences = str2num(data(numel('au occurences:')+1:end));
% Skip ahead two lines
data = fgetl(fid);
data = fgetl(fid);
ind = ind + 2;
beg_ind = ind;
end
if(beg_ind ~= -1 && end_ind == -1)
if(~isempty(findstr(data, '}')))
end_ind = ind;
else
d = strsplit(data, ' ');
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
end
end
data = fgetl(fid);
ind = ind + 1;
end
fclose(fid);
%%
labels_pred = zeros(size(labels_gt));
for i=1:numel(filenames)
% Will need to read the relevant AUs only
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
for k=1:beg_ind
data = fgetl(fid);
end
for k=1:num_occurences
data = fgetl(fid);
if(sum(aus_Bosph == aus_det(k))>0)
d = strsplit(data, ' ');
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
end
end
fclose(fid);
end
end
%%
f = fopen('Bosphorus_res_class.txt', 'w');
labels_gt_bin = labels_gt;
labels_gt_bin(labels_gt_bin > 1) = 1;
for au = 1:numel(aus_Bosph)
tp = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 1);
fp = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 1);
fn = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 0);
tn = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 0);
precision = tp./(tp+fp);
recall = tp./(tp+fn);
f1 = 2 * precision .* recall ./ (precision + recall);
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_Bosph(au), precision, recall, f1);
end
fclose(f);
%% Read the predicted values for intensities
% First read the first file to get the ids and line numbers
% au occurences
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
data = fgetl(fid);
ind = 0;
beg_ind = -1;
end_ind = -1;
aus_det = [];
aus_det_id = [];
while ischar(data)
if(~isempty(findstr(data, 'au intensities:')))
num_occurences = str2num(data(numel('au intensities:')+1:end));
% Skip ahead two lines
data = fgetl(fid);
data = fgetl(fid);
ind = ind + 2;
beg_ind = ind;
end
if(beg_ind ~= -1 && end_ind == -1)
if(~isempty(findstr(data, '}')))
end_ind = ind;
else
d = strsplit(data, ' ');
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
end
end
data = fgetl(fid);
ind = ind + 1;
end
fclose(fid);
%%
labels_pred = zeros(size(labels_gt));
for i=1:numel(filenames)
% Will need to read the relevant AUs only
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
for k=1:beg_ind
data = fgetl(fid);
end
for k=1:num_occurences
data = fgetl(fid);
if(sum(aus_Bosph == aus_det(k))>0)
d = strsplit(data, ' ');
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
end
end
fclose(fid);
end
end
%%
f = fopen('Bosphorus_res_class.txt', 'w');
labels_gt_bin = labels_gt;
labels_gt_bin(labels_gt_bin > 1) = 1;
for au = 1:numel(aus_Bosph)
tp = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 1);
fp = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 1);
fn = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 0);
tn = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 0);
precision = tp./(tp+fp);
recall = tp./(tp+fn);
f1 = 2 * precision .* recall ./ (precision + recall);
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_Bosph(au), precision, recall, f1);
end
fclose(f);

View file

@ -0,0 +1,103 @@
function [ labels, valid_ids, filenames ] = extract_Bosphorus_labels( Bosphorus_dir, recs, aus )
%EXTRACT_SEMAINE_LABELS Summary of this function goes here
% Detailed explanation goes here
% Ignoring rare ones or ones that don't overlap with other datasets
aus_Bosphorus = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 43];
aus(aus == 45) = 43;
%%
fid = fopen([Bosphorus_dir, './facscodes/facscodes.lst']);
% Skipping the header
fgetl(fid);
fgetl(fid);
% Starting to read
data = fgetl(fid);
all_aus = [];
valid = [];
id = 1;
filenames = {};
while ischar(data)
d = strsplit(data, '->');
data = fgetl(fid);
filename = strtrim(d{1});
% Skip extreme poses
if(~isempty(findstr(filename, 'CR')) || ~isempty(findstr(filename, 'YR') > 0) || ~isempty(findstr(filename, 'PR_U'))|| ~isempty(findstr(filename, 'PR_D')))
continue;
end
% ignore labels from non requested users
if(isempty(strmatch(filename(1:5), recs)))
continue;
end
filenames = cat(1, filenames, filename);
aus_str = d{2}(3:end);
% decode the AU data
aus_c = strsplit(aus_str, '+');
curr_img_au = zeros(1, 80);
for i=1:numel(aus_c)
if(aus_c{i} == '0')
continue
end
intensity = -1;
intensity_str = aus_c{i}(end);
if(intensity_str == 'A')
intensity = 1;
elseif(intensity_str == 'B')
intensity = 2;
elseif(intensity_str == 'C')
intensity = 3;
elseif(intensity_str == 'D')
intensity = 4;
elseif(intensity_str == 'E')
intensity = 5;
end
if(~isempty(str2num(aus_c{i}(1))))
if(intensity ~= -1)
num = str2num(aus_c{i}(1:end-1));
else
num = str2num(aus_c{i}(1:end));
intensity = 3; % if no intensity given just assume 3
end
else
if(intensity ~= -1)
num = str2num(aus_c{i}(2:end-1));
else
num = str2num(aus_c{i}(2:end));
intensity = 3; % if no intensity given just assume 3
end
end
curr_img_au(1, num) = intensity;
end
all_aus = cat(1, all_aus, curr_img_au);
valid = cat(1, valid, [true]);
id = id + 1;
end
%aus_bosph = dlmread(, '->', 3, 0);
fclose(fid);
valid_ids = logical(valid);
labels = all_aus(:, aus);
end

View file

@ -0,0 +1,32 @@
clear
features_exe = '"..\..\..\x64\Release\FeatureExtraction.exe"';
bosph_loc = 'D:\Datasets\Bosphorus\BosphorusDB\BosphorusDB/';
out_loc = 'D:\Datasets\face_datasets/';
% Go two levels deep
bosph_dirs = dir([bosph_loc, '/bs*']);
for f1=1:numel(bosph_dirs)
name = [bosph_dirs(f1).name];
curr_vids = dir([bosph_loc, '/' name, '/*.png']);
parfor i=1:numel(curr_vids)
command = features_exe;
input_file = [bosph_loc, '/' name '/', curr_vids(i).name];
[~, curr_name, ~] = fileparts(curr_vids(i).name);
output_file = [out_loc, '/hog_aligned_rigid_b/', curr_name, '/'];
output_hog = [out_loc, '/hog_aligned_rigid_b/',curr_name '.hog'];
output_params = [out_loc, '/model_params_b/', curr_name '.txt'];
command = cat(2, command, [' -rigid -f "' input_file '" -simalign "' output_file '" -simscale 0.7 -simsize 112 ']);
command = cat(2, command, [' -hogalign "' output_hog '"' ' -of "' output_params ]);
command = cat(2, command, ['" -no2Dfp -no3Dfp -noAUs -noPose -noGaze -q ']);
dos(command);
end
end

View file

@ -9,10 +9,6 @@ out_loc = 'D:\Datasets\face_datasets/';
unbc_dirs = dir(unbc_loc); unbc_dirs = dir(unbc_loc);
unbc_dirs = unbc_dirs(3:end); unbc_dirs = unbc_dirs(3:end);
if(~exist([out_loc, '/clm_params/'], 'file'))
mkdir([out_loc, '/clm_params/']);
end
parfor f1=1:numel(unbc_dirs) parfor f1=1:numel(unbc_dirs)
unbc_dirs_level_2 = dir([unbc_loc, unbc_dirs(f1).name]); unbc_dirs_level_2 = dir([unbc_loc, unbc_dirs(f1).name]);

View file

@ -0,0 +1,21 @@
if(exist('D:/Datasets/Bosphorus/', 'file'))
Bosphorus_dir = 'D:\Datasets\Bosphorus/';
else
fprintf('Bosphorus dataset location not found (or not defined)\n');
end
hog_data_dir = ['D:\Datasets\face_datasets'];
all_recs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
all_recs_mat = cat(1, all_recs.name);
all_recs = cell(numel(all_recs), 1);
for i=1:size(all_recs_mat,1)
all_recs{i} = all_recs_mat(i,:);
end
devel_recs = all_recs(1:3:end);
train_recs = setdiff(all_recs, devel_recs);

View file

@ -75,8 +75,20 @@ labels_devel = cat(1, labels_devel{:});
valid_ids_test = valid_ids_devel_hog; valid_ids_test = valid_ids_devel_hog;
% normalise the data % Peforming zone specific masking
load(pca_file); if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
% normalise the data
pca_file = '../../pca_generation/generic_face_upper.mat';
load(pca_file);
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
% normalise the data
pca_file = '../../pca_generation/generic_face_lower.mat';
load(pca_file);
elseif(au_train == 9) % Central face model
% normalise the data
pca_file = '../../pca_generation/generic_face_rigid.mat';
load(pca_file);
end
PC_n = zeros(size(PC)+size(train_geom_data, 2)); PC_n = zeros(size(PC)+size(train_geom_data, 2));
PC_n(1:size(PC,1), 1:size(PC,2)) = PC; PC_n(1:size(PC,1), 1:size(PC,2)) = PC;

View file

@ -71,8 +71,20 @@ devel_appearance_data = cat(2, devel_appearance_data, devel_geom_data);
valid_ids_devel = valid_ids_devel_hog; valid_ids_devel = valid_ids_devel_hog;
% normalise the data % Peforming zone specific masking
load(pca_file); if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
% normalise the data
pca_file = '../../pca_generation/generic_face_upper.mat';
load(pca_file);
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
% normalise the data
pca_file = '../../pca_generation/generic_face_lower.mat';
load(pca_file);
elseif(au_train == 9) % Central face model
% normalise the data
pca_file = '../../pca_generation/generic_face_rigid.mat';
load(pca_file);
end
PC_n = zeros(size(PC)+size(train_geom_data, 2)); PC_n = zeros(size(PC)+size(train_geom_data, 2));
PC_n(1:size(PC,1), 1:size(PC,2)) = PC; PC_n(1:size(PC,1), 1:size(PC,2)) = PC;

View file

@ -1,5 +1,5 @@
function [data_train, labels_train, vid_ids_train_string, data_devel, labels_devel, vid_ids_devel_string, raw_devel, PC, means_norm, stds_norm, success_devel] = ... function [data_train, labels_train, vid_ids_train_string, data_devel, labels_devel, vid_ids_devel_string, raw_devel, PC, means_norm, stds_norm, success_devel] = ...
Prepare_HOG_AU_data_generic_intensity(train_users, devel_users, au_train, bp4d_dir, hog_data_dir, pca_file) Prepare_HOG_AU_data_generic_intensity(train_users, devel_users, au_train, bp4d_dir, hog_data_dir)
%% %%
addpath(genpath('../data extraction/')); addpath(genpath('../data extraction/'));
@ -76,8 +76,20 @@ labels_devel = cat(1, labels_devel{:});
success_devel = valid_ids_devel; success_devel = valid_ids_devel;
% normalise the data % Peforming zone specific masking
load(pca_file); if(au_train < 8 || au_train == 43 || au_train == 45) % upper face AUs ignore bottom face
% normalise the data
pca_file = '../../pca_generation/generic_face_upper.mat';
load(pca_file);
elseif(au_train > 9) % lower face AUs ignore upper face and the sides
% normalise the data
pca_file = '../../pca_generation/generic_face_lower.mat';
load(pca_file);
elseif(au_train == 9) % Central face model
% normalise the data
pca_file = '../../pca_generation/generic_face_rigid.mat';
load(pca_file);
end
PC_n = zeros(size(PC)+size(devel_geom_data, 2)); PC_n = zeros(size(PC)+size(devel_geom_data, 2));
PC_n(1:size(PC,1), 1:size(PC,2)) = PC; PC_n(1:size(PC,1), 1:size(PC,2)) = PC;

View file

@ -14,10 +14,10 @@ hyperparams.p = 10.^(-2);
hyperparams.validate_params = {'c', 'p'}; hyperparams.validate_params = {'c', 'p'};
% Set the training function % Set the training function
svr_train = @svr_train_linear_shift_fancy; svr_train = @svr_train_linear_shift;
% Set the test function (the first output will be used for validation) % Set the test function (the first output will be used for validation)
svr_test = @svr_test_linear_shift_fancy; svr_test = @svr_test_linear_shift;
pca_loc = '../../pca_generation/generic_face_rigid.mat'; pca_loc = '../../pca_generation/generic_face_rigid.mat';

View file

@ -14,10 +14,10 @@ hyperparams.p = 10.^(-2);
hyperparams.validate_params = {'c', 'p'}; hyperparams.validate_params = {'c', 'p'};
% Set the training function % Set the training function
svr_train = @svr_train_linear_shift_fancy; svr_train = @svr_train_linear_shift;
% Set the test function (the first output will be used for validation) % Set the test function (the first output will be used for validation)
svr_test = @svr_test_linear_shift_fancy; svr_test = @svr_test_linear_shift;
pca_loc = '../../pca_generation/generic_face_rigid.mat'; pca_loc = '../../pca_generation/generic_face_rigid.mat';

Some files were not shown because too many files have changed in this diff Show more