2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
2017-05-09 01:36:23 +00:00
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
2017-05-09 01:36:23 +00:00
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
2017-02-23 18:45:09 +00:00
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
2016-04-28 19:40:36 +00:00
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
2017-02-23 18:45:09 +00:00
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
2016-04-28 19:40:36 +00:00
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
2017-02-23 18:45:09 +00:00
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
2016-04-28 19:40:36 +00:00
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
2017-02-23 18:45:09 +00:00
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
2016-04-28 19:40:36 +00:00
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
# ifndef __LANDMARK_DETECTOR_MODEL_h_
# define __LANDMARK_DETECTOR_MODEL_h_
// OpenCV dependencies
# include <opencv2/core/core.hpp>
# include <opencv2/objdetect.hpp>
// dlib dependencies for face detection
# include <dlib/image_processing/frontal_face_detector.h>
# include <dlib/opencv.h>
# include "PDM.h"
# include "Patch_experts.h"
# include "LandmarkDetectionValidator.h"
# include "LandmarkDetectorParameters.h"
using namespace std ;
namespace LandmarkDetector
{
// A main class containing all the modules required for landmark detection
// Face shape model
// Patch experts
// Optimization techniques
class CLNF {
public :
//===========================================================================
// Member variables that contain the model description
// The linear 3D Point Distribution Model
PDM pdm ;
// The set of patch experts
Patch_experts patch_experts ;
// The local and global parameters describing the current model instance (current landmark detections)
// Local parameters describing the non-rigid shape
cv : : Mat_ < double > params_local ;
// Global parameters describing the rigid shape [scale, euler_x, euler_y, euler_z, tx, ty]
cv : : Vec6d params_global ;
// A collection of hierarchical CLNF models that can be used for refinement
vector < CLNF > hierarchical_models ;
vector < string > hierarchical_model_names ;
vector < vector < pair < int , int > > > hierarchical_mapping ;
vector < FaceModelParameters > hierarchical_params ;
//==================== Helpers for face detection and landmark detection validation =========================================
// Haar cascade classifier for face detection
cv : : CascadeClassifier face_detector_HAAR ;
string face_detector_location ;
// A HOG SVM-struct based face detector
dlib : : frontal_face_detector face_detector_HOG ;
// Validate if the detected landmarks are correct using an SVR regressor
DetectionValidator landmark_validator ;
// Indicating if landmark detection succeeded (based on SVR validator)
bool detection_success ;
// Indicating if the tracking has been initialised (for video based tracking)
bool tracking_initialised ;
// The actual output of the regressor (-1 is perfect detection 1 is worst detection)
double detection_certainty ;
// Indicator if eye model is there for eye detection
2017-02-23 18:45:09 +00:00
bool eye_model ;
2016-04-28 19:40:36 +00:00
// the triangulation per each view (for drawing purposes only)
vector < cv : : Mat_ < int > > triangulations ;
//===========================================================================
// Member variables that retain the state of the tracking (reflecting the state of the lastly tracked (detected) image
// Lastly detect 2D model shape [x1,x2,...xn,y1,...yn]
cv : : Mat_ < double > detected_landmarks ;
// The landmark detection likelihoods (combined and per patch expert)
double model_likelihood ;
cv : : Mat_ < double > landmark_likelihoods ;
// Keeping track of how many frames the tracker has failed in so far when tracking in videos
// This is useful for knowing when to initialise and reinitialise tracking
int failures_in_a_row ;
// A template of a face that last succeeded with tracking (useful for large motions in video)
cv : : Mat_ < uchar > face_template ;
// Useful when resetting or initialising the model closer to a specific location (when multiple faces are present)
cv : : Point_ < double > preference_det ;
2016-10-06 20:17:33 +00:00
// Useful to control where face detections should not occur (for live demos etc.)
double detect_Z_max = - 1 ; // Do not detect faces further than this in mm. (-1) refers to detecting all faces
cv : : Rect_ < double > detect_ROI = cv : : Rect ( 0 , 0 , 1 , 1 ) ; // the face detection bounds (0,0,1,1) means full image (0.25,0.25,0.5,0.5) would imply region of the face only
2016-04-28 19:40:36 +00:00
// A default constructor
CLNF ( ) ;
// Constructor from a model file
CLNF ( string fname ) ;
// Copy constructor (makes a deep copy of the detector)
CLNF ( const CLNF & other ) ;
// Assignment operator for lvalues (makes a deep copy of the detector)
CLNF & operator = ( const CLNF & other ) ;
// Empty Destructor as the memory of every object will be managed by the corresponding libraries (no pointers)
~ CLNF ( ) { }
// Move constructor
CLNF ( const CLNF & & other ) ;
// Assignment operator for rvalues
CLNF & operator = ( const CLNF & & other ) ;
// Does the actual work - landmark detection
bool DetectLandmarks ( const cv : : Mat_ < uchar > & image , const cv : : Mat_ < float > & depth , FaceModelParameters & params ) ;
// Gets the shape of the current detected landmarks in camera space (given camera calibration)
// Can only be called after a call to DetectLandmarksInVideo or DetectLandmarksInImage
cv : : Mat_ < double > GetShape ( double fx , double fy , double cx , double cy ) const ;
// A utility bounding box function
cv : : Rect_ < double > GetBoundingBox ( ) const ;
// Reset the model (useful if we want to completelly reinitialise, or we want to track another video)
void Reset ( ) ;
// Reset the model, choosing the face nearest (x,y) where x and y are between 0 and 1.
void Reset ( double x , double y ) ;
// Reading the model in
void Read ( string name ) ;
// Helper reading function
void Read_CLNF ( string clnf_location ) ;
private :
// the speedup of RLMS using precalculated KDE responses (described in Saragih 2011 RLMS paper)
map < int , cv : : Mat_ < float > > kde_resp_precalc ;
// The model fitting: patch response computation and optimisation steps
bool Fit ( const cv : : Mat_ < uchar > & intensity_image , const cv : : Mat_ < float > & depth_image , const std : : vector < int > & window_sizes , const FaceModelParameters & parameters ) ;
// Mean shift computation that uses precalculated kernel density estimators (the one actually used)
void NonVectorisedMeanShift_precalc_kde ( cv : : Mat_ < float > & out_mean_shifts , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Mat_ < float > & dxs , const cv : : Mat_ < float > & dys , int resp_size , float a , int scale , int view_id , map < int , cv : : Mat_ < float > > & mean_shifts ) ;
// The actual model optimisation (update step), returns the model likelihood
double NU_RLMS ( cv : : Vec6d & final_global , cv : : Mat_ < double > & final_local , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Vec6d & initial_global , const cv : : Mat_ < double > & initial_local ,
const cv : : Mat_ < double > & base_shape , const cv : : Matx22d & sim_img_to_ref , const cv : : Matx22f & sim_ref_to_img , int resp_size , int view_idx , bool rigid , int scale , cv : : Mat_ < double > & landmark_lhoods , const FaceModelParameters & parameters ) ;
// Removing background image from the depth
bool RemoveBackground ( cv : : Mat_ < float > & out_depth_image , const cv : : Mat_ < float > & depth_image ) ;
// Generating the weight matrix for the Weighted least squares
void GetWeightMatrix ( cv : : Mat_ < float > & WeightMatrix , int scale , int view_id , const FaceModelParameters & parameters ) ;
//=======================================================
// Legacy functions that are not used at the moment
//=======================================================
// Mean shift computation
void NonVectorisedMeanShift ( cv : : Mat_ < double > & out_mean_shifts , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Mat_ < double > & dxs , const cv : : Mat_ < double > & dys , int resp_size , double a , int scale , int view_id ) ;
// A vectorised version of mean shift (Not actually used)
void VectorisedMeanShift ( cv : : Mat_ < double > & meanShifts , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Mat_ < double > & iis , const cv : : Mat_ < double > & jjs , const cv : : Mat_ < double > & dxs , const cv : : Mat_ < double > & dys , const cv : : Size patchSize , double sigma , int scale , int view_id ) ;
} ;
//===========================================================================
}
# endif