2016-04-28 21:40:36 +02:00
///////////////////////////////////////////////////////////////////////////////
2017-05-09 03:36:23 +02:00
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 21:40:36 +02:00
// all rights reserved.
//
2017-05-09 03:36:23 +02:00
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
2016-04-28 21:40:36 +02:00
//
2017-05-09 03:36:23 +02:00
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 21:40:36 +02:00
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FaceTrackingVid.cpp : Defines the entry point for the console application for tracking faces in videos.
// Libraries for landmark detection (includes CLNF and CLM modules)
# include "LandmarkCoreIncludes.h"
# include "GazeEstimation.h"
# include <fstream>
# include <sstream>
// OpenCV includes
# include <opencv2/videoio/videoio.hpp> // Video write
# include <opencv2/videoio/videoio_c.h> // Video write
# include <opencv2/imgproc.hpp>
# include <opencv2/highgui/highgui.hpp>
// Boost includes
# include <filesystem.hpp>
# include <filesystem/fstream.hpp>
# define INFO_STREAM( stream ) \
std : : cout < < stream < < std : : endl
# define WARN_STREAM( stream ) \
std : : cout < < " Warning: " < < stream < < std : : endl
# define ERROR_STREAM( stream ) \
std : : cout < < " Error: " < < stream < < std : : endl
static void printErrorAndAbort ( const std : : string & error )
{
std : : cout < < error < < std : : endl ;
abort ( ) ;
}
# define FATAL_STREAM( stream ) \
printErrorAndAbort ( std : : string ( " Fatal error: " ) + stream )
using namespace std ;
vector < string > get_arguments ( int argc , char * * argv )
{
vector < string > arguments ;
for ( int i = 0 ; i < argc ; + + i )
{
arguments . push_back ( string ( argv [ i ] ) ) ;
}
return arguments ;
}
// Some globals for tracking timing information for visualisation
double fps_tracker = - 1.0 ;
int64 t0 = 0 ;
// Visualising the results
void visualise_tracking ( cv : : Mat & captured_image , cv : : Mat_ < float > & depth_image , const LandmarkDetector : : CLNF & face_model , const LandmarkDetector : : FaceModelParameters & det_parameters , cv : : Point3f gazeDirection0 , cv : : Point3f gazeDirection1 , int frame_count , double fx , double fy , double cx , double cy )
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model . detection_certainty ;
bool detection_success = face_model . detection_success ;
double visualisation_boundary = 0.2 ;
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if ( detection_certainty < visualisation_boundary )
{
LandmarkDetector : : Draw ( captured_image , face_model ) ;
double vis_certainty = detection_certainty ;
if ( vis_certainty > 1 )
vis_certainty = 1 ;
if ( vis_certainty < - 1 )
vis_certainty = - 1 ;
vis_certainty = ( vis_certainty + 1 ) / ( visualisation_boundary + 1 ) ;
// A rough heuristic for box around the face width
int thickness = ( int ) std : : ceil ( 2.0 * ( ( double ) captured_image . cols ) / 640.0 ) ;
cv : : Vec6d pose_estimate_to_draw = LandmarkDetector : : GetCorrectedPoseWorld ( face_model , fx , fy , cx , cy ) ;
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector : : DrawBox ( captured_image , pose_estimate_to_draw , cv : : Scalar ( ( 1 - vis_certainty ) * 255.0 , 0 , vis_certainty * 255 ) , thickness , fx , fy , cx , cy ) ;
if ( det_parameters . track_gaze & & detection_success & & face_model . eye_model )
{
FaceAnalysis : : DrawGaze ( captured_image , face_model , gazeDirection0 , gazeDirection1 , fx , fy , cx , cy ) ;
}
}
// Work out the framerate
if ( frame_count % 10 = = 0 )
{
double t1 = cv : : getTickCount ( ) ;
fps_tracker = 10.0 / ( double ( t1 - t0 ) / cv : : getTickFrequency ( ) ) ;
t0 = t1 ;
}
// Write out the framerate on the image before displaying it
char fpsC [ 255 ] ;
std : : sprintf ( fpsC , " %d " , ( int ) fps_tracker ) ;
string fpsSt ( " FPS: " ) ;
fpsSt + = fpsC ;
cv : : putText ( captured_image , fpsSt , cv : : Point ( 10 , 20 ) , CV_FONT_HERSHEY_SIMPLEX , 0.5 , CV_RGB ( 255 , 0 , 0 ) ) ;
if ( ! det_parameters . quiet_mode )
{
cv : : namedWindow ( " tracking_result " , 1 ) ;
cv : : imshow ( " tracking_result " , captured_image ) ;
if ( ! depth_image . empty ( ) )
{
// Division needed for visualisation purposes
imshow ( " depth " , depth_image / 2000.0 ) ;
}
}
}
int main ( int argc , char * * argv )
{
vector < string > arguments = get_arguments ( argc , argv ) ;
// Some initial parameters that can be overriden from command line
vector < string > files , depth_directories , output_video_files , out_dummy ;
// By default try webcam 0
int device = 0 ;
LandmarkDetector : : FaceModelParameters det_parameters ( arguments ) ;
// Get the input output file parameters
// Indicates that rotation should be with respect to world or camera coordinates
bool u ;
2016-09-14 09:00:57 +02:00
string output_codec ;
LandmarkDetector : : get_video_input_output_params ( files , depth_directories , out_dummy , output_video_files , u , output_codec , arguments ) ;
2016-04-28 21:40:36 +02:00
// The modules that are being used for tracking
LandmarkDetector : : CLNF clnf_model ( det_parameters . model_location ) ;
// Grab camera parameters, if they are not defined (approximate values will be used)
float fx = 0 , fy = 0 , cx = 0 , cy = 0 ;
// Get camera parameters
LandmarkDetector : : get_camera_params ( device , fx , fy , cx , cy , arguments ) ;
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
bool cx_undefined = false ;
bool fx_undefined = false ;
if ( cx = = 0 | | cy = = 0 )
{
cx_undefined = true ;
}
if ( fx = = 0 | | fy = = 0 )
{
fx_undefined = true ;
}
// If multiple video files are tracked, use this to indicate if we are done
bool done = false ;
int f_n = - 1 ;
det_parameters . track_gaze = true ;
while ( ! done ) // this is not a for loop as we might also be reading from a webcam
{
string current_file ;
// We might specify multiple video files as arguments
if ( files . size ( ) > 0 )
{
f_n + + ;
current_file = files [ f_n ] ;
}
else
{
// If we want to write out from webcam
f_n = 0 ;
}
bool use_depth = ! depth_directories . empty ( ) ;
// Do some grabbing
cv : : VideoCapture video_capture ;
if ( current_file . size ( ) > 0 )
{
if ( ! boost : : filesystem : : exists ( current_file ) )
{
FATAL_STREAM ( " File does not exist " ) ;
2016-07-29 19:04:25 +02:00
return 1 ;
2016-04-28 21:40:36 +02:00
}
current_file = boost : : filesystem : : path ( current_file ) . generic_string ( ) ;
INFO_STREAM ( " Attempting to read from file: " < < current_file ) ;
video_capture = cv : : VideoCapture ( current_file ) ;
}
else
{
INFO_STREAM ( " Attempting to capture from device: " < < device ) ;
video_capture = cv : : VideoCapture ( device ) ;
// Read a first frame often empty in camera
cv : : Mat captured_image ;
video_capture > > captured_image ;
}
2016-07-29 19:04:25 +02:00
if ( ! video_capture . isOpened ( ) )
{
FATAL_STREAM ( " Failed to open video source " ) ;
return 1 ;
}
2016-04-28 21:40:36 +02:00
else INFO_STREAM ( " Device or file opened " ) ;
cv : : Mat captured_image ;
video_capture > > captured_image ;
// If optical centers are not defined just use center of image
if ( cx_undefined )
{
cx = captured_image . cols / 2.0f ;
cy = captured_image . rows / 2.0f ;
}
// Use a rough guess-timate of focal length
if ( fx_undefined )
{
fx = 500 * ( captured_image . cols / 640.0 ) ;
fy = 500 * ( captured_image . rows / 480.0 ) ;
fx = ( fx + fy ) / 2.0 ;
fy = fx ;
}
int frame_count = 0 ;
// saving the videos
cv : : VideoWriter writerFace ;
if ( ! output_video_files . empty ( ) )
{
2016-09-14 09:00:57 +02:00
try
{
writerFace = cv : : VideoWriter ( output_video_files [ f_n ] , CV_FOURCC ( output_codec [ 0 ] , output_codec [ 1 ] , output_codec [ 2 ] , output_codec [ 3 ] ) , 30 , captured_image . size ( ) , true ) ;
}
catch ( cv : : Exception e )
{
WARN_STREAM ( " Could not open VideoWriter, OUTPUT FILE WILL NOT BE WRITTEN. Currently using codec " < < output_codec < < " , try using an other one (-oc option) " ) ;
}
2016-04-28 21:40:36 +02:00
}
// Use for timestamping if using a webcam
int64 t_initial = cv : : getTickCount ( ) ;
INFO_STREAM ( " Starting tracking " ) ;
while ( ! captured_image . empty ( ) )
{
// Reading the images
cv : : Mat_ < float > depth_image ;
cv : : Mat_ < uchar > grayscale_image ;
if ( captured_image . channels ( ) = = 3 )
{
cv : : cvtColor ( captured_image , grayscale_image , CV_BGR2GRAY ) ;
}
else
{
grayscale_image = captured_image . clone ( ) ;
}
// Get depth image
if ( use_depth )
{
char * dst = new char [ 100 ] ;
std : : stringstream sstream ;
sstream < < depth_directories [ f_n ] < < " \\ depth%05d.png " ;
sprintf ( dst , sstream . str ( ) . c_str ( ) , frame_count + 1 ) ;
// Reading in 16-bit png image representing depth
cv : : Mat_ < short > depth_image_16_bit = cv : : imread ( string ( dst ) , - 1 ) ;
// Convert to a floating point depth image
if ( ! depth_image_16_bit . empty ( ) )
{
depth_image_16_bit . convertTo ( depth_image , CV_32F ) ;
}
else
{
WARN_STREAM ( " Can't find depth image " ) ;
}
}
// The actual facial landmark detection / tracking
bool detection_success = LandmarkDetector : : DetectLandmarksInVideo ( grayscale_image , depth_image , clnf_model , det_parameters ) ;
// Visualising the results
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = clnf_model . detection_certainty ;
// Gaze tracking, absolute gaze direction
cv : : Point3f gazeDirection0 ( 0 , 0 , - 1 ) ;
cv : : Point3f gazeDirection1 ( 0 , 0 , - 1 ) ;
if ( det_parameters . track_gaze & & detection_success & & clnf_model . eye_model )
{
FaceAnalysis : : EstimateGaze ( clnf_model , gazeDirection0 , fx , fy , cx , cy , true ) ;
FaceAnalysis : : EstimateGaze ( clnf_model , gazeDirection1 , fx , fy , cx , cy , false ) ;
}
visualise_tracking ( captured_image , depth_image , clnf_model , det_parameters , gazeDirection0 , gazeDirection1 , frame_count , fx , fy , cx , cy ) ;
// output the tracked video
if ( ! output_video_files . empty ( ) )
{
writerFace < < captured_image ;
}
video_capture > > captured_image ;
// detect key presses
char character_press = cv : : waitKey ( 1 ) ;
// restart the tracker
if ( character_press = = ' r ' )
{
clnf_model . Reset ( ) ;
}
// quit the application
else if ( character_press = = ' q ' )
{
return ( 0 ) ;
}
// Update the frame count
frame_count + + ;
}
frame_count = 0 ;
// Reset the model, for the next video
clnf_model . Reset ( ) ;
// break out of the loop if done with all the files (or using a webcam)
if ( f_n = = files . size ( ) - 1 | | files . empty ( ) )
{
done = true ;
}
}
return 0 ;
}