59 lines
1.6 KiB
Mathematica
59 lines
1.6 KiB
Mathematica
|
function [ decision ] = face_check_cnn( img, shape, global_params, cnns )
|
||
|
%FACE_CHECK_CNN Summary of this function goes here
|
||
|
% Detailed explanation goes here
|
||
|
|
||
|
%%
|
||
|
if(size(img,3) == 3)
|
||
|
img = rgb2gray(img);
|
||
|
end
|
||
|
% first need to determine the view
|
||
|
centres = cat(1, cnns.centres);
|
||
|
|
||
|
dists = centres*pi/180 - repmat(global_params(2:4)',size(centres,1),1);
|
||
|
[~,view_id] = min(sum(dists.^2,2));
|
||
|
|
||
|
mask_small = cnns(view_id).mask(1:size(cnns(view_id).triX,1), 1:size(cnns(view_id).triX,2));
|
||
|
|
||
|
if(size(cnns(view_id).destination,1) == 66 && size(shape,1) == 68)
|
||
|
label_inds = [1:60,62:64,66:68];
|
||
|
shape = shape(label_inds,:);
|
||
|
end
|
||
|
img_crop = Crop(img, shape, cnns(view_id).triangulation,...
|
||
|
cnns(view_id).triX, mask_small,...
|
||
|
cnns(view_id).alphas, cnns(view_id).betas,...
|
||
|
cnns(view_id).nPix, cnns(view_id).minX, ...
|
||
|
cnns(view_id).minY);
|
||
|
|
||
|
%%
|
||
|
img_crop = reshape(img_crop(logical(cnns(view_id).mask)), 1, cnns(view_id).nPix);
|
||
|
img_crop(isnan(img_crop)) = 0;
|
||
|
|
||
|
% normalisation (local)
|
||
|
img_crop = (img_crop - mean(img_crop));
|
||
|
norms = std(img_crop);
|
||
|
if(norms==0)
|
||
|
norms = 1;
|
||
|
end
|
||
|
img_crop = img_crop / norms;
|
||
|
|
||
|
% normalisation (global)
|
||
|
img_crop = img_crop - cnns(view_id).mean_ex;
|
||
|
img_crop = img_crop ./ cnns(view_id).std_ex;
|
||
|
|
||
|
mask = cnns(view_id).mask;
|
||
|
|
||
|
% Normalisation to 0-1
|
||
|
% img(mask) = img_crop / 255;
|
||
|
img = zeros(size(mask));
|
||
|
img(mask) = img_crop;
|
||
|
% img = cat(3, img, img);
|
||
|
% [er, bad] = nntest(nn, test_x, test_y);
|
||
|
|
||
|
cnn = cnns(view_id).cnn;
|
||
|
%%
|
||
|
cnn = cnnff(cnn, img);
|
||
|
|
||
|
decision = cnn.o(1);
|
||
|
|
||
|
% normalise decision from ~ 0, 1 to [0,3]
|
||
|
decision = decision * 3;
|