126 lines
4.3 KiB
Mathematica
126 lines
4.3 KiB
Mathematica
|
function WriteOutFaceCheckersCNNbinary(locationTxt, faceCheckers)
|
||
|
|
||
|
addpath('..\PDM_helpers\');
|
||
|
|
||
|
% use little-endian
|
||
|
faceCheckerFile = fopen(locationTxt, 'w', 'l');
|
||
|
|
||
|
views = numel(faceCheckers);
|
||
|
|
||
|
% Type 0 - linear SVR, 1 - feed forward neural net, 2 - CNN
|
||
|
fwrite(faceCheckerFile, 2, 'uint'); % 4 bytes
|
||
|
|
||
|
% Number of face checkers
|
||
|
fwrite(faceCheckerFile, views, 'uint'); % 4 bytes
|
||
|
|
||
|
% Matrices representing view orientations
|
||
|
for i=1:views
|
||
|
% this indicates that we're writing a 3x1 double matrix
|
||
|
writeMatrixBin(faceCheckerFile, faceCheckers(i).centres', 6);
|
||
|
end
|
||
|
|
||
|
for i = 1:views
|
||
|
|
||
|
% The normalisation models
|
||
|
% Mean of images
|
||
|
writeMatrixBin(faceCheckerFile, faceCheckers(i).mean_ex, 6);
|
||
|
|
||
|
% Standard deviation of images
|
||
|
writeMatrixBin(faceCheckerFile, faceCheckers(i).std_ex, 6);
|
||
|
|
||
|
cnn = faceCheckers(i).cnn;
|
||
|
|
||
|
num_depth_layers = size(cnn.layers,1);
|
||
|
|
||
|
% Get the number of layers
|
||
|
fwrite(faceCheckerFile, num_depth_layers, 'uint'); % 4 bytes
|
||
|
|
||
|
for layers=2:num_depth_layers
|
||
|
|
||
|
% write layer type: 0 - convolutional, 1 - subsampling, 2-
|
||
|
% fully connected
|
||
|
if(cnn.layers{layers}.type == 'c')
|
||
|
|
||
|
% write the type (convolutional)
|
||
|
fwrite(faceCheckerFile, 0, 'uint'); % 4 bytes
|
||
|
|
||
|
num_in_map = size(cnn.layers{layers}.k,2);
|
||
|
|
||
|
% write the number of input maps
|
||
|
fwrite(faceCheckerFile, num_in_map, 'uint'); % 4 bytes
|
||
|
|
||
|
num_out_kerns = cnn.layers{layers}.outputmaps;
|
||
|
|
||
|
% write the number of kernels for each output map
|
||
|
fwrite(faceCheckerFile, num_out_kerns, 'uint'); % 4 bytes
|
||
|
|
||
|
% Write output map bias terms
|
||
|
for k2=1:num_out_kerns
|
||
|
fwrite(faceCheckerFile, cnn.layers{layers}.b{k2}, 'float32'); % 4 bytes
|
||
|
end
|
||
|
|
||
|
for k=1:num_in_map
|
||
|
for k2=1:num_out_kerns
|
||
|
% Write out the bias term
|
||
|
W = cnn.layers{layers}.k{k}{k2};
|
||
|
writeMatrixBin(faceCheckerFile, W, 5);
|
||
|
end
|
||
|
end
|
||
|
|
||
|
else
|
||
|
fwrite(faceCheckerFile, 1, 'uint'); % 4 bytes
|
||
|
% size of scaling
|
||
|
fwrite(faceCheckerFile, cnn.layers{layers}.scale, 'uint'); % 4 bytes
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
% This is the fully connected layer
|
||
|
fwrite(faceCheckerFile, 2, 'uint'); % 4 bytes
|
||
|
|
||
|
% the bias term
|
||
|
fwrite(faceCheckerFile, cnn.ffb, 'float32');
|
||
|
% the weights
|
||
|
writeMatrixBin(faceCheckerFile, cnn.ffW, 5);
|
||
|
%sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
|
||
|
|
||
|
% Piecewise affine warp
|
||
|
|
||
|
nPix = faceCheckers(i).nPix;
|
||
|
minX = faceCheckers(i).minX;
|
||
|
minY = faceCheckers(i).minY;
|
||
|
|
||
|
destination = reshape(faceCheckers(i).destination, numel(faceCheckers(i).destination), 1);
|
||
|
triangulation = faceCheckers(i).triangulation;
|
||
|
triX = faceCheckers(i).triX;
|
||
|
mask = faceCheckers(i).mask;
|
||
|
alphas = faceCheckers(i).alphas;
|
||
|
betas = faceCheckers(i).betas;
|
||
|
|
||
|
fwrite(faceCheckerFile, nPix, 'uint'); % 4 bytes
|
||
|
fwrite(faceCheckerFile, minX, 'float64'); % 8 bytes
|
||
|
fwrite(faceCheckerFile, minY, 'float64'); % 8 bytes
|
||
|
|
||
|
% Destination shape
|
||
|
writeMatrixBin(faceCheckerFile, destination, 6);
|
||
|
|
||
|
% Triangulation
|
||
|
writeMatrixBin(faceCheckerFile, triangulation, 4);
|
||
|
|
||
|
% Triangle map
|
||
|
writeMatrixBin(faceCheckerFile, triX, 4);
|
||
|
|
||
|
% Mask
|
||
|
writeMatrixBin(faceCheckerFile, mask, 4);
|
||
|
|
||
|
% Alphas
|
||
|
writeMatrixBin(faceCheckerFile, alphas, 6);
|
||
|
|
||
|
% Betas
|
||
|
writeMatrixBin(faceCheckerFile, betas, 6);
|
||
|
|
||
|
end
|
||
|
|
||
|
fclose(faceCheckerFile);
|
||
|
|
||
|
end
|