sustaining_gazes/exe/FeatureExtraction/FeatureExtraction.cpp

362 lines
12 KiB
C++
Raw Normal View History

2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
2016-04-28 19:40:36 +00:00
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
2016-04-28 19:40:36 +00:00
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
2016-04-28 19:40:36 +00:00
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
2016-04-28 19:40:36 +00:00
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
2016-04-28 19:40:36 +00:00
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FeatureExtraction.cpp : Defines the entry point for the feature extraction console application.
// System includes
#include <fstream>
#include <sstream>
// OpenCV includes
#include <opencv2/videoio/videoio.hpp> // Video write
#include <opencv2/videoio/videoio_c.h> // Video write
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
// Boost includes
#include <filesystem.hpp>
#include <filesystem/fstream.hpp>
#include <boost/algorithm/string.hpp>
// Local includes
#include "LandmarkCoreIncludes.h"
#include <Face_utils.h>
#include <FaceAnalyser.h>
#include <GazeEstimation.h>
#include <RecorderOpenFace.h>
2017-11-03 16:40:07 +00:00
#include <RecorderOpenFaceParameters.h>
#include <SequenceCapture.h>
2016-04-28 19:40:36 +00:00
#ifndef CONFIG_DIR
#define CONFIG_DIR "~"
#endif
2016-04-28 19:40:36 +00:00
#define INFO_STREAM( stream ) \
std::cout << stream << std::endl
#define WARN_STREAM( stream ) \
std::cout << "Warning: " << stream << std::endl
#define ERROR_STREAM( stream ) \
std::cout << "Error: " << stream << std::endl
static void printErrorAndAbort( const std::string & error )
{
std::cout << error << std::endl;
}
#define FATAL_STREAM( stream ) \
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
using namespace std;
vector<string> get_arguments(int argc, char **argv)
{
vector<string> arguments;
// First argument is reserved for the name of the executable
for(int i = 0; i < argc; ++i)
{
arguments.push_back(string(argv[i]));
}
return arguments;
}
2017-11-05 08:14:01 +00:00
void get_visualization_params(bool& visualize_track, bool& visualize_align, bool& visualize_hog, vector<string> &arguments);
2016-04-28 19:40:36 +00:00
// Some globals for tracking timing information for visualisation (TODO bit ugly)
double fps_tracker = -1.0;
int64 t0 = 0;
int frame_count = 0;
2017-11-09 18:25:49 +00:00
// Visualising the results TODO separate class
void visualise_tracking(cv::Mat& captured_image, const LandmarkDetector::CLNF& face_model, const LandmarkDetector::FaceModelParameters& det_parameters, cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, double fx, double fy, double cx, double cy)
2016-04-28 19:40:36 +00:00
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model.detection_certainty;
bool detection_success = face_model.detection_success;
double visualisation_boundary = 0.4;
2016-04-28 19:40:36 +00:00
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if (detection_certainty > visualisation_boundary)
2016-04-28 19:40:36 +00:00
{
LandmarkDetector::Draw(captured_image, face_model);
double vis_certainty = detection_certainty;
if (vis_certainty > 1)
vis_certainty = 1;
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
2016-04-28 19:40:36 +00:00
// A rough heuristic for box around the face width
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
2016-04-28 19:40:36 +00:00
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector::DrawBox(captured_image, pose_estimate_to_draw, cv::Scalar(vis_certainty*255.0, 0, (1-vis_certainty) * 255), thickness, fx, fy, cx, cy);
2016-04-28 19:40:36 +00:00
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
{
GazeAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
2016-04-28 19:40:36 +00:00
}
}
2017-11-09 18:25:49 +00:00
// Work out the framerate TODO
if (frame_count % 10 == 0)
{
double t1 = cv::getTickCount();
fps_tracker = 10.0 / (double(t1 - t0) / cv::getTickFrequency());
t0 = t1;
}
2016-04-28 19:40:36 +00:00
// Write out the framerate on the image before displaying it
char fpsC[255];
std::sprintf(fpsC, "%d", (int)fps_tracker);
string fpsSt("FPS:");
fpsSt += fpsC;
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
frame_count++;
2016-04-28 19:40:36 +00:00
}
2016-05-19 15:51:32 +00:00
int main (int argc, char **argv)
2016-04-28 19:40:36 +00:00
{
2016-05-19 15:51:32 +00:00
vector<string> arguments = get_arguments(argc, argv);
2016-04-28 19:40:36 +00:00
2017-11-05 08:14:01 +00:00
// Deciding what to visualize
bool visualize_track = false;
bool visualize_align = false;
bool visualize_hog = false;
2017-11-05 08:14:01 +00:00
get_visualization_params(visualize_track, visualize_align, visualize_hog, arguments);
2017-11-03 09:04:00 +00:00
// Load the modules that are being used for tracking and face analysis
// Load face landmark detector
LandmarkDetector::FaceModelParameters det_parameters(arguments);
// Always track gaze in feature extraction
det_parameters.track_gaze = true;
LandmarkDetector::CLNF face_model(det_parameters.model_location);
2016-04-28 19:40:36 +00:00
// Load facial feature extractor and AU analyser
FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments);
FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params);
2017-11-09 18:25:49 +00:00
Utilities::SequenceCapture sequence_reader;
while (true) // this is not a for loop as we might also be reading from a webcam
2016-04-28 19:40:36 +00:00
{
2017-11-05 08:24:42 +00:00
2017-11-09 18:25:49 +00:00
// The sequence reader chooses what to open based on command line arguments provided
if(!sequence_reader.Open(arguments))
break;
2017-11-05 08:24:42 +00:00
2017-11-09 18:25:49 +00:00
INFO_STREAM("Device or file opened");
2016-04-28 19:40:36 +00:00
cv::Mat captured_image;
2017-11-09 18:25:49 +00:00
Utilities::RecorderOpenFaceParameters recording_params(arguments, true, sequence_reader.fps);
2017-11-09 18:37:26 +00:00
Utilities::RecorderOpenFace open_face_rec(sequence_reader.name, recording_params, arguments);
2016-04-28 19:40:36 +00:00
2017-11-09 18:25:49 +00:00
captured_image = sequence_reader.GetNextFrame();
2016-04-28 19:40:36 +00:00
// For reporting progress
double reported_completion = 0;
2017-11-05 08:24:42 +00:00
INFO_STREAM("Starting tracking");
while (!captured_image.empty())
{
2016-04-28 19:40:36 +00:00
2017-11-09 18:25:49 +00:00
// Converting to grayscale
cv::Mat_<uchar> grayscale_image = sequence_reader.GetGrayFrame();
2017-11-05 08:24:42 +00:00
2016-04-28 19:40:36 +00:00
// The actual facial landmark detection / tracking
2017-11-09 18:25:49 +00:00
bool detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_model, det_parameters);
2017-11-05 08:24:42 +00:00
2016-04-28 19:40:36 +00:00
// Gaze tracking, absolute gaze direction
cv::Point3f gazeDirection0(0, 0, -1);
cv::Point3f gazeDirection1(0, 0, -1);
cv::Vec2d gazeAngle(0, 0);
2016-04-28 19:40:36 +00:00
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
{
2017-11-09 18:37:26 +00:00
GazeAnalysis::EstimateGaze(face_model, gazeDirection0, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, true);
GazeAnalysis::EstimateGaze(face_model, gazeDirection1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, false);
gazeAngle = GazeAnalysis::GetGazeAngle(gazeDirection0, gazeDirection1);
2016-04-28 19:40:36 +00:00
}
// Do face alignment
cv::Mat sim_warped_img;
cv::Mat_<double> hog_descriptor;
2017-11-03 16:40:07 +00:00
int num_hog_rows = 0, num_hog_cols = 0;
2016-04-28 19:40:36 +00:00
2017-11-03 09:04:00 +00:00
// As this can be expensive only compute it if needed by output or visualization
2017-11-05 08:24:42 +00:00
if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || recording_params.outputAUs() || visualize_align || visualize_hog)
2016-04-28 19:40:36 +00:00
{
face_analyser.AddNextFrame(captured_image, face_model.detected_landmarks, face_model.detection_success, sequence_reader.time_stamp, false, !det_parameters.quiet_mode);
2016-04-28 19:40:36 +00:00
face_analyser.GetLatestAlignedFace(sim_warped_img);
2017-11-05 08:24:42 +00:00
if (!det_parameters.quiet_mode && visualize_align)
2016-04-28 19:40:36 +00:00
{
2017-11-05 08:24:42 +00:00
cv::imshow("sim_warp", sim_warped_img);
2016-04-28 19:40:36 +00:00
}
2017-11-05 08:24:42 +00:00
if (recording_params.outputHOG() || (visualize_hog && !det_parameters.quiet_mode))
2016-04-28 19:40:36 +00:00
{
face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols);
2016-04-28 19:40:36 +00:00
2017-11-05 08:24:42 +00:00
if (visualize_hog && !det_parameters.quiet_mode)
2016-04-28 19:40:36 +00:00
{
cv::Mat_<double> hog_descriptor_vis;
FaceAnalysis::Visualise_FHOG(hog_descriptor, num_hog_rows, num_hog_cols, hog_descriptor_vis);
2017-11-05 08:24:42 +00:00
cv::imshow("hog", hog_descriptor_vis);
2016-04-28 19:40:36 +00:00
}
}
}
// Work out the pose of the head from the tracked model
2017-11-09 18:37:26 +00:00
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
2016-04-28 19:40:36 +00:00
// Drawing the visualization on the captured image
2017-11-05 08:24:42 +00:00
if (recording_params.outputTrackedVideo() || (visualize_track && !det_parameters.quiet_mode))
{
visualise_tracking(captured_image, face_model, det_parameters, gazeDirection0, gazeDirection1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
}
2016-04-28 19:40:36 +00:00
2017-11-03 09:04:00 +00:00
// Setting up the recorder output
2017-11-05 08:14:01 +00:00
open_face_rec.SetObservationHOG(detection_success, hog_descriptor, num_hog_rows, num_hog_cols, 31); // The number of channels in HOG is fixed at the moment, as using FHOG
open_face_rec.SetObservationVisualization(captured_image);
open_face_rec.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass());
open_face_rec.SetObservationGaze(gazeDirection0, gazeDirection1, gazeAngle, LandmarkDetector::CalculateAllEyeLandmarks(face_model));
open_face_rec.SetObservationLandmarks(face_model.detected_landmarks, face_model.GetShape(sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy),
face_model.params_global, face_model.params_local, face_model.detection_certainty, detection_success);
2017-11-05 08:14:01 +00:00
open_face_rec.SetObservationPose(pose_estimate);
open_face_rec.SetObservationTimestamp(sequence_reader.time_stamp);
2017-11-09 21:28:35 +00:00
open_face_rec.SetObservationFaceAlign(sim_warped_img);
2017-11-05 08:14:01 +00:00
open_face_rec.WriteObservation();
2016-04-28 19:40:36 +00:00
// Visualize the image if desired
if (visualize_track && !det_parameters.quiet_mode)
{
cv::namedWindow("tracking_result", 1);
cv::imshow("tracking_result", captured_image);
cv::waitKey(1);
}
2017-11-03 09:04:00 +00:00
// Grabbing the next frame (todo this should be part of capture)
2017-11-09 18:25:49 +00:00
captured_image = sequence_reader.GetNextFrame();
// Reporting progress
if(sequence_reader.GetProgress() >= reported_completion / 10.0)
2016-04-28 19:40:36 +00:00
{
cout << reported_completion * 10 << "% ";
reported_completion = reported_completion + 1;
2016-04-28 19:40:36 +00:00
}
}
2017-11-05 08:14:01 +00:00
open_face_rec.Close();
2016-04-28 19:40:36 +00:00
if (recording_params.outputAUs())
2016-04-28 19:40:36 +00:00
{
2016-06-03 20:53:27 +00:00
cout << "Postprocessing the Action Unit predictions" << endl;
2017-11-05 09:21:55 +00:00
face_analyser.PostprocessOutputFile(open_face_rec.GetCSVFile());
2016-04-28 19:40:36 +00:00
}
2017-11-05 09:21:55 +00:00
2016-04-28 19:40:36 +00:00
// Reset the models for the next video
face_analyser.Reset();
face_model.Reset();
}
return 0;
}
2017-11-04 20:57:24 +00:00
void get_visualization_params(bool& visualize_track, bool& visualize_align, bool& visualize_hog,vector<string> &arguments)
2016-05-19 15:51:32 +00:00
{
bool* valid = new bool[arguments.size()];
for (size_t i = 0; i < arguments.size(); ++i)
{
valid[i] = true;
}
string output_root = "";
visualize_align = false;
visualize_hog = false;
visualize_track = false;
2016-05-19 15:51:32 +00:00
for (size_t i = 0; i < arguments.size(); ++i)
{
2017-11-05 08:14:01 +00:00
if (arguments[i].compare("-verbose") == 0)
2016-05-19 15:51:32 +00:00
{
visualize_track = true;
visualize_align = true;
visualize_hog = true;
}
else if (arguments[i].compare("-vis-align") == 0)
{
visualize_align = true;
valid[i] = false;
}
else if (arguments[i].compare("-vis-hog") == 0)
{
visualize_hog = true;
valid[i] = false;
}
else if (arguments[i].compare("-vis-track") == 0)
{
visualize_track = true;
valid[i] = false;
2016-05-19 15:51:32 +00:00
}
}
for (int i = arguments.size() - 1; i >= 0; --i)
{
if (!valid[i])
{
arguments.erase(arguments.begin() + i);
}
}
}