sustaining_gazes/matlab_runners/Head Pose Experiments/calcBiwiError.m

84 lines
2.6 KiB
Mathematica
Raw Normal View History

function [meanError, all_rot_preds, all_rot_gts, meanErrors, all_errors, rels_all, seq_ids] = calcBiwiError(resDir, gtDir)
2016-04-28 21:40:36 +02:00
seqNames = {'01','02','03','04','05','06','07','08','09', ...
'10', '11','12','13','14','15','16','17','18','19', ...
'20', '21','22','23','24'};
rotMeanErr = zeros(numel(seqNames),3);
rotRMS = zeros(numel(seqNames),3);
rot = cell(1,numel(seqNames));
rotg = cell(1,numel(seqNames));
rels_all = [];
seq_ids = {};
2016-04-28 21:40:36 +02:00
for i=1:numel(seqNames)
posesGround = load ([gtDir '/' seqNames{i} '/groundTruthPose.txt']);
2017-11-07 08:25:44 +01:00
[frame t, rels, sc tx ty tz rx ry rz] = textread([resDir '/' seqNames{i} '.csv'], '%f, %f, %f, %f, %f, %f, %f, %f, %f, %f', 'headerlines', 1);
2016-04-28 21:40:36 +02:00
% the reliabilities of head pose
rels_all = cat(1, rels_all, rels);
rotg{i} = posesGround(:,[5 6 7]);
rot{i} = [rx ry rz];
2016-11-23 23:17:26 +01:00
T = [tx ty tx];
2016-04-28 21:40:36 +02:00
% Correct the first frame so it corresponds to (0,0,0), as slightly
% different pose might be assumed frontal and this corrects for
% that
% Work out the correction matrix for ground truth
rot_corr_gt = Euler2Rot(rotg{i}(1,:));
for r_e = 1:size(rotg{i},1)
rot_curr_gt = Euler2Rot(rotg{i}(r_e,:));
rot_new_gt = rot_corr_gt' * rot_curr_gt;
rotg{i}(r_e,:) = Rot2Euler(rot_new_gt);
end
2016-11-23 23:17:26 +01:00
% First move the orientation to camera space
zx = sqrt(tx.^2 + tz.^2);
eul_x = atan2(ty, zx);
zy = sqrt(ty.^2 + tz.^2);
eul_y = -atan2(tx, zy);
for r_e = 1:size(rot{i},1)
cam_rot = Euler2Rot([eul_x(r_e), eul_y(r_e), 0]);
h_rot = Euler2Rot(rot{i}(r_e,:));
c_rot = cam_rot * h_rot;
rot{i}(r_e,:) = Rot2Euler(c_rot);
end
% Work out the correction matrix for estimates
2016-04-28 21:40:36 +02:00
rot_corr_est = Euler2Rot(rot{i}(1,:));
for r_e = 1:size(rot{i},1)
rot_curr_est = Euler2Rot(rot{i}(r_e,:));
rot_new_est = rot_corr_est' * rot_curr_est;
rot{i}(r_e,:) = Rot2Euler(rot_new_est);
end
rotg{i} = rotg{i} * 180 / pi;
rot{i} = rot{i} * 180 / pi;
rotMeanErr(i,:) = mean(abs((rot{i}(:,:)-rotg{i}(:,:))));
rotRMS(i,:) = sqrt(mean(((rot{i}(:,:)-rotg{i}(:,:))).^2));
seq_ids = cat(1, seq_ids, repmat(seqNames(i), size(rot{i},1), 1));
2016-04-28 21:40:36 +02:00
end
%%
meanErrors = rotMeanErr;
allRot = cell2mat(rot');
allRotg = cell2mat(rotg');
meanError = mean(abs((allRot(:,:)-allRotg(:,:))));
all_errors = abs(allRot-allRotg);
rmsError = sqrt(mean(((allRot(:,:)-allRotg(:,:))).^2));
errorVariance = std(abs((allRot(:,:)-allRotg(:,:))));
all_rot_preds = allRot;
all_rot_gts = allRotg;