2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
2017-05-09 01:36:23 +00:00
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
2017-05-09 01:36:23 +00:00
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
# include "stdafx.h"
# include <LandmarkDetectorFunc.h>
// OpenCV includes
# include <opencv2/core/core.hpp>
# include <opencv2/calib3d.hpp>
# include <opencv2/imgproc.hpp>
// System includes
# include <vector>
using namespace LandmarkDetector ;
// Getting a head pose estimate from the currently detected landmarks (rotation with respect to point camera)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv : : Vec6d LandmarkDetector : : GetPoseCamera ( const CLNF & clnf_model , double fx , double fy , double cx , double cy )
{
if ( ! clnf_model . detected_landmarks . empty ( ) & & clnf_model . params_global [ 0 ] ! = 0 )
{
double Z = fx / clnf_model . params_global [ 0 ] ;
double X = ( ( clnf_model . params_global [ 4 ] - cx ) * ( 1.0 / fx ) ) * Z ;
double Y = ( ( clnf_model . params_global [ 5 ] - cy ) * ( 1.0 / fy ) ) * Z ;
return cv : : Vec6d ( X , Y , Z , clnf_model . params_global [ 1 ] , clnf_model . params_global [ 2 ] , clnf_model . params_global [ 3 ] ) ;
}
else
{
return cv : : Vec6d ( 0 , 0 , 0 , 0 , 0 , 0 ) ;
}
}
// Getting a head pose estimate from the currently detected landmarks (rotation in world coordinates)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv : : Vec6d LandmarkDetector : : GetPoseWorld ( const CLNF & clnf_model , double fx , double fy , double cx , double cy )
{
if ( ! clnf_model . detected_landmarks . empty ( ) & & clnf_model . params_global [ 0 ] ! = 0 )
{
double Z = fx / clnf_model . params_global [ 0 ] ;
double X = ( ( clnf_model . params_global [ 4 ] - cx ) * ( 1.0 / fx ) ) * Z ;
double Y = ( ( clnf_model . params_global [ 5 ] - cy ) * ( 1.0 / fy ) ) * Z ;
// Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose
double z_x = cv : : sqrt ( X * X + Z * Z ) ;
double eul_x = atan2 ( Y , z_x ) ;
double z_y = cv : : sqrt ( Y * Y + Z * Z ) ;
double eul_y = - atan2 ( X , z_y ) ;
cv : : Matx33d camera_rotation = LandmarkDetector : : Euler2RotationMatrix ( cv : : Vec3d ( eul_x , eul_y , 0 ) ) ;
cv : : Matx33d head_rotation = LandmarkDetector : : AxisAngle2RotationMatrix ( cv : : Vec3d ( clnf_model . params_global [ 1 ] , clnf_model . params_global [ 2 ] , clnf_model . params_global [ 3 ] ) ) ;
cv : : Matx33d corrected_rotation = camera_rotation . t ( ) * head_rotation ;
cv : : Vec3d euler_corrected = LandmarkDetector : : RotationMatrix2Euler ( corrected_rotation ) ;
return cv : : Vec6d ( X , Y , Z , euler_corrected [ 0 ] , euler_corrected [ 1 ] , euler_corrected [ 2 ] ) ;
}
else
{
return cv : : Vec6d ( 0 , 0 , 0 , 0 , 0 , 0 ) ;
}
}
// Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to orthographic camera issue
// This is because rotation estimate under orthographic assumption is only correct close to the centre of the image
// This method returns a corrected pose estimate with respect to world coordinates (Experimental)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv : : Vec6d LandmarkDetector : : GetCorrectedPoseWorld ( const CLNF & clnf_model , double fx , double fy , double cx , double cy )
{
if ( ! clnf_model . detected_landmarks . empty ( ) & & clnf_model . params_global [ 0 ] ! = 0 )
{
// This is used as an initial estimate for the iterative PnP algorithm
double Z = fx / clnf_model . params_global [ 0 ] ;
double X = ( ( clnf_model . params_global [ 4 ] - cx ) * ( 1.0 / fx ) ) * Z ;
double Y = ( ( clnf_model . params_global [ 5 ] - cy ) * ( 1.0 / fy ) ) * Z ;
// Correction for orientation
// 2D points
cv : : Mat_ < double > landmarks_2D = clnf_model . detected_landmarks ;
landmarks_2D = landmarks_2D . reshape ( 1 , 2 ) . t ( ) ;
// 3D points
cv : : Mat_ < double > landmarks_3D ;
clnf_model . pdm . CalcShape3D ( landmarks_3D , clnf_model . params_local ) ;
landmarks_3D = landmarks_3D . reshape ( 1 , 3 ) . t ( ) ;
// Solving the PNP model
// The camera matrix
cv : : Matx33d camera_matrix ( fx , 0 , cx , 0 , fy , cy , 0 , 0 , 1 ) ;
cv : : Vec3d vec_trans ( X , Y , Z ) ;
cv : : Vec3d vec_rot ( clnf_model . params_global [ 1 ] , clnf_model . params_global [ 2 ] , clnf_model . params_global [ 3 ] ) ;
cv : : solvePnP ( landmarks_3D , landmarks_2D , camera_matrix , cv : : Mat ( ) , vec_rot , vec_trans , true ) ;
cv : : Vec3d euler = LandmarkDetector : : AxisAngle2Euler ( vec_rot ) ;
return cv : : Vec6d ( vec_trans [ 0 ] , vec_trans [ 1 ] , vec_trans [ 2 ] , vec_rot [ 0 ] , vec_rot [ 1 ] , vec_rot [ 2 ] ) ;
}
else
{
return cv : : Vec6d ( 0 , 0 , 0 , 0 , 0 , 0 ) ;
}
}
// Getting a head pose estimate from the currently detected landmarks, with appropriate correction due to perspective projection
// This method returns a corrected pose estimate with respect to a point camera (NOTE not the world coordinates) (Experimental)
// The format returned is [Tx, Ty, Tz, Eul_x, Eul_y, Eul_z]
cv : : Vec6d LandmarkDetector : : GetCorrectedPoseCamera ( const CLNF & clnf_model , double fx , double fy , double cx , double cy )
{
if ( ! clnf_model . detected_landmarks . empty ( ) & & clnf_model . params_global [ 0 ] ! = 0 )
{
double Z = fx / clnf_model . params_global [ 0 ] ;
double X = ( ( clnf_model . params_global [ 4 ] - cx ) * ( 1.0 / fx ) ) * Z ;
double Y = ( ( clnf_model . params_global [ 5 ] - cy ) * ( 1.0 / fy ) ) * Z ;
// Correction for orientation
// 3D points
cv : : Mat_ < double > landmarks_3D ;
clnf_model . pdm . CalcShape3D ( landmarks_3D , clnf_model . params_local ) ;
landmarks_3D = landmarks_3D . reshape ( 1 , 3 ) . t ( ) ;
// 2D points
cv : : Mat_ < double > landmarks_2D = clnf_model . detected_landmarks ;
landmarks_2D = landmarks_2D . reshape ( 1 , 2 ) . t ( ) ;
// Solving the PNP model
// The camera matrix
cv : : Matx33d camera_matrix ( fx , 0 , cx , 0 , fy , cy , 0 , 0 , 1 ) ;
cv : : Vec3d vec_trans ( X , Y , Z ) ;
cv : : Vec3d vec_rot ( clnf_model . params_global [ 1 ] , clnf_model . params_global [ 2 ] , clnf_model . params_global [ 3 ] ) ;
cv : : solvePnP ( landmarks_3D , landmarks_2D , camera_matrix , cv : : Mat ( ) , vec_rot , vec_trans , true ) ;
// Here we correct for the camera orientation, for this need to determine the angle the camera makes with the head pose
double z_x = cv : : sqrt ( vec_trans [ 0 ] * vec_trans [ 0 ] + vec_trans [ 2 ] * vec_trans [ 2 ] ) ;
double eul_x = atan2 ( vec_trans [ 1 ] , z_x ) ;
double z_y = cv : : sqrt ( vec_trans [ 1 ] * vec_trans [ 1 ] + vec_trans [ 2 ] * vec_trans [ 2 ] ) ;
double eul_y = - atan2 ( vec_trans [ 0 ] , z_y ) ;
cv : : Matx33d camera_rotation = LandmarkDetector : : Euler2RotationMatrix ( cv : : Vec3d ( eul_x , eul_y , 0 ) ) ;
cv : : Matx33d head_rotation = LandmarkDetector : : AxisAngle2RotationMatrix ( vec_rot ) ;
cv : : Matx33d corrected_rotation = camera_rotation * head_rotation ;
cv : : Vec3d euler_corrected = LandmarkDetector : : RotationMatrix2Euler ( corrected_rotation ) ;
return cv : : Vec6d ( vec_trans [ 0 ] , vec_trans [ 1 ] , vec_trans [ 2 ] , euler_corrected [ 0 ] , euler_corrected [ 1 ] , euler_corrected [ 2 ] ) ;
}
else
{
return cv : : Vec6d ( 0 , 0 , 0 , 0 , 0 , 0 ) ;
}
}
// If landmark detection in video succeeded create a template for use in simple tracking
void UpdateTemplate ( const cv : : Mat_ < uchar > & grayscale_image , CLNF & clnf_model )
{
cv : : Rect bounding_box ;
clnf_model . pdm . CalcBoundingBox ( bounding_box , clnf_model . params_global , clnf_model . params_local ) ;
// Make sure the box is not out of bounds
bounding_box = bounding_box & cv : : Rect ( 0 , 0 , grayscale_image . cols , grayscale_image . rows ) ;
clnf_model . face_template = grayscale_image ( bounding_box ) . clone ( ) ;
}
// This method uses basic template matching in order to allow for better tracking of fast moving faces
void CorrectGlobalParametersVideo ( const cv : : Mat_ < uchar > & grayscale_image , CLNF & clnf_model , const FaceModelParameters & params )
{
cv : : Rect init_box ;
clnf_model . pdm . CalcBoundingBox ( init_box , clnf_model . params_global , clnf_model . params_local ) ;
cv : : Rect roi ( init_box . x - init_box . width / 2 , init_box . y - init_box . height / 2 , init_box . width * 2 , init_box . height * 2 ) ;
roi = roi & cv : : Rect ( 0 , 0 , grayscale_image . cols , grayscale_image . rows ) ;
int off_x = roi . x ;
int off_y = roi . y ;
double scaling = params . face_template_scale / clnf_model . params_global [ 0 ] ;
cv : : Mat_ < uchar > image ;
if ( scaling < 1 )
{
cv : : resize ( clnf_model . face_template , clnf_model . face_template , cv : : Size ( ) , scaling , scaling ) ;
cv : : resize ( grayscale_image ( roi ) , image , cv : : Size ( ) , scaling , scaling ) ;
}
else
{
scaling = 1 ;
image = grayscale_image ( roi ) . clone ( ) ;
}
// Resizing the template
cv : : Mat corr_out ;
cv : : matchTemplate ( image , clnf_model . face_template , corr_out , CV_TM_CCOEFF_NORMED ) ;
// Actually matching it
//double min, max;
int max_loc [ 2 ] ;
cv : : minMaxIdx ( corr_out , NULL , NULL , NULL , max_loc ) ;
cv : : Rect_ < double > out_bbox ( max_loc [ 1 ] / scaling + off_x , max_loc [ 0 ] / scaling + off_y , clnf_model . face_template . rows / scaling , clnf_model . face_template . cols / scaling ) ;
double shift_x = out_bbox . x - ( double ) init_box . x ;
double shift_y = out_bbox . y - ( double ) init_box . y ;
clnf_model . params_global [ 4 ] = clnf_model . params_global [ 4 ] + shift_x ;
clnf_model . params_global [ 5 ] = clnf_model . params_global [ 5 ] + shift_y ;
}
bool LandmarkDetector : : DetectLandmarksInVideo ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Mat_ < float > & depth_image , CLNF & clnf_model , FaceModelParameters & params )
{
// First need to decide if the landmarks should be "detected" or "tracked"
// Detected means running face detection and a larger search area, tracked means initialising from previous step
// and using a smaller search area
// Indicating that this is a first detection in video sequence or after restart
bool initial_detection = ! clnf_model . tracking_initialised ;
// Only do it if there was a face detection at all
if ( clnf_model . tracking_initialised )
{
// The area of interest search size will depend if the previous track was successful
if ( ! clnf_model . detection_success )
{
params . window_sizes_current = params . window_sizes_init ;
}
else
{
params . window_sizes_current = params . window_sizes_small ;
}
// Before the expensive landmark detection step apply a quick template tracking approach
if ( params . use_face_template & & ! clnf_model . face_template . empty ( ) & & clnf_model . detection_success )
{
CorrectGlobalParametersVideo ( grayscale_image , clnf_model , params ) ;
}
bool track_success = clnf_model . DetectLandmarks ( grayscale_image , depth_image , params ) ;
if ( ! track_success )
{
// Make a record that tracking failed
clnf_model . failures_in_a_row + + ;
}
else
{
// indicate that tracking is a success
clnf_model . failures_in_a_row = - 1 ;
UpdateTemplate ( grayscale_image , clnf_model ) ;
}
}
// This is used for both detection (if it the tracking has not been initialised yet) or if the tracking failed (however we do this every n frames, for speed)
// This also has the effect of an attempt to reinitialise just after the tracking has failed, which is useful during large motions
if ( ( ! clnf_model . tracking_initialised & & ( clnf_model . failures_in_a_row + 1 ) % ( params . reinit_video_every * 6 ) = = 0 )
| | ( clnf_model . tracking_initialised & & ! clnf_model . detection_success & & params . reinit_video_every > 0 & & clnf_model . failures_in_a_row % params . reinit_video_every = = 0 ) )
{
cv : : Rect_ < double > bounding_box ;
// If the face detector has not been initialised read it in
if ( clnf_model . face_detector_HAAR . empty ( ) )
{
clnf_model . face_detector_HAAR . load ( params . face_detector_location ) ;
clnf_model . face_detector_location = params . face_detector_location ;
}
cv : : Point preference_det ( - 1 , - 1 ) ;
if ( clnf_model . preference_det . x ! = - 1 & & clnf_model . preference_det . y ! = - 1 )
{
preference_det . x = clnf_model . preference_det . x * grayscale_image . cols ;
preference_det . y = clnf_model . preference_det . y * grayscale_image . rows ;
clnf_model . preference_det = cv : : Point ( - 1 , - 1 ) ;
}
bool face_detection_success ;
if ( params . curr_face_detector = = FaceModelParameters : : HOG_SVM_DETECTOR )
{
double confidence ;
face_detection_success = LandmarkDetector : : DetectSingleFaceHOG ( bounding_box , grayscale_image , clnf_model . face_detector_HOG , confidence , preference_det ) ;
}
else if ( params . curr_face_detector = = FaceModelParameters : : HAAR_DETECTOR )
{
face_detection_success = LandmarkDetector : : DetectSingleFace ( bounding_box , grayscale_image , clnf_model . face_detector_HAAR , preference_det ) ;
}
// Attempt to detect landmarks using the detected face (if unseccessful the detection will be ignored)
if ( face_detection_success )
{
// Indicate that tracking has started as a face was detected
clnf_model . tracking_initialised = true ;
// Keep track of old model values so that they can be restored if redetection fails
cv : : Vec6d params_global_init = clnf_model . params_global ;
cv : : Mat_ < double > params_local_init = clnf_model . params_local . clone ( ) ;
double likelihood_init = clnf_model . model_likelihood ;
cv : : Mat_ < double > detected_landmarks_init = clnf_model . detected_landmarks . clone ( ) ;
cv : : Mat_ < double > landmark_likelihoods_init = clnf_model . landmark_likelihoods . clone ( ) ;
// Use the detected bounding box and empty local parameters
clnf_model . params_local . setTo ( 0 ) ;
clnf_model . pdm . CalcParams ( clnf_model . params_global , bounding_box , clnf_model . params_local ) ;
// Make sure the search size is large
params . window_sizes_current = params . window_sizes_init ;
// Do the actual landmark detection (and keep it only if successful)
bool landmark_detection_success = clnf_model . DetectLandmarks ( grayscale_image , depth_image , params ) ;
// If landmark reinitialisation unsucessful continue from previous estimates
// if it's initial detection however, do not care if it was successful as the validator might be wrong, so continue trackig
// regardless
if ( ! initial_detection & & ! landmark_detection_success )
{
// Restore previous estimates
clnf_model . params_global = params_global_init ;
clnf_model . params_local = params_local_init . clone ( ) ;
clnf_model . pdm . CalcShape2D ( clnf_model . detected_landmarks , clnf_model . params_local , clnf_model . params_global ) ;
clnf_model . model_likelihood = likelihood_init ;
clnf_model . detected_landmarks = detected_landmarks_init . clone ( ) ;
clnf_model . landmark_likelihoods = landmark_likelihoods_init . clone ( ) ;
return false ;
}
else
{
clnf_model . failures_in_a_row = - 1 ;
UpdateTemplate ( grayscale_image , clnf_model ) ;
return true ;
}
}
}
// if the model has not been initialised yet class it as a failure
if ( ! clnf_model . tracking_initialised )
{
clnf_model . failures_in_a_row + + ;
}
// un-initialise the tracking
if ( clnf_model . failures_in_a_row > 100 )
{
clnf_model . tracking_initialised = false ;
}
return clnf_model . detection_success ;
}
bool LandmarkDetector : : DetectLandmarksInVideo ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Mat_ < float > & depth_image , const cv : : Rect_ < double > bounding_box , CLNF & clnf_model , FaceModelParameters & params )
{
if ( bounding_box . width > 0 )
{
// calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown)
clnf_model . params_local . setTo ( 0 ) ;
clnf_model . pdm . CalcParams ( clnf_model . params_global , bounding_box , clnf_model . params_local ) ;
// indicate that face was detected so initialisation is not necessary
clnf_model . tracking_initialised = true ;
}
return DetectLandmarksInVideo ( grayscale_image , depth_image , clnf_model , params ) ;
}
bool LandmarkDetector : : DetectLandmarksInVideo ( const cv : : Mat_ < uchar > & grayscale_image , CLNF & clnf_model , FaceModelParameters & params )
{
return DetectLandmarksInVideo ( grayscale_image , cv : : Mat_ < float > ( ) , clnf_model , params ) ;
}
bool LandmarkDetector : : DetectLandmarksInVideo ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Rect_ < double > bounding_box , CLNF & clnf_model , FaceModelParameters & params )
{
2016-10-20 15:01:00 +00:00
return DetectLandmarksInVideo ( grayscale_image , cv : : Mat_ < float > ( ) , bounding_box , clnf_model , params ) ;
2016-04-28 19:40:36 +00:00
}
//================================================================================================================
// Landmark detection in image, need to provide an image and optionally CLNF model together with parameters (default values work well)
// Optionally can provide a bounding box in which detection is performed (this is useful if multiple faces are to be detected in images)
//================================================================================================================
// This is the one where the actual work gets done, other DetectLandmarksInImage calls lead to this one
bool LandmarkDetector : : DetectLandmarksInImage ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Mat_ < float > depth_image , const cv : : Rect_ < double > bounding_box , CLNF & clnf_model , FaceModelParameters & params )
{
// Can have multiple hypotheses
vector < cv : : Vec3d > rotation_hypotheses ;
if ( params . multi_view )
{
// Try out different orientation initialisations
// It is possible to add other orientation hypotheses easilly by just pushing to this vector
rotation_hypotheses . push_back ( cv : : Vec3d ( 0 , 0 , 0 ) ) ;
rotation_hypotheses . push_back ( cv : : Vec3d ( 0 , 0.5236 , 0 ) ) ;
rotation_hypotheses . push_back ( cv : : Vec3d ( 0 , - 0.5236 , 0 ) ) ;
rotation_hypotheses . push_back ( cv : : Vec3d ( 0.5236 , 0 , 0 ) ) ;
rotation_hypotheses . push_back ( cv : : Vec3d ( - 0.5236 , 0 , 0 ) ) ;
}
else
{
// Assume the face is close to frontal
rotation_hypotheses . push_back ( cv : : Vec3d ( 0 , 0 , 0 ) ) ;
}
// Use the initialisation size for the landmark detection
params . window_sizes_current = params . window_sizes_init ;
// Store the current best estimate
double best_likelihood ;
cv : : Vec6d best_global_parameters ;
cv : : Mat_ < double > best_local_parameters ;
cv : : Mat_ < double > best_detected_landmarks ;
cv : : Mat_ < double > best_landmark_likelihoods ;
bool best_success ;
// The hierarchical model parameters
vector < double > best_likelihood_h ( clnf_model . hierarchical_models . size ( ) ) ;
vector < cv : : Vec6d > best_global_parameters_h ( clnf_model . hierarchical_models . size ( ) ) ;
vector < cv : : Mat_ < double > > best_local_parameters_h ( clnf_model . hierarchical_models . size ( ) ) ;
vector < cv : : Mat_ < double > > best_detected_landmarks_h ( clnf_model . hierarchical_models . size ( ) ) ;
vector < cv : : Mat_ < double > > best_landmark_likelihoods_h ( clnf_model . hierarchical_models . size ( ) ) ;
for ( size_t hypothesis = 0 ; hypothesis < rotation_hypotheses . size ( ) ; + + hypothesis )
{
// Reset the potentially set clnf_model parameters
clnf_model . params_local . setTo ( 0.0 ) ;
for ( size_t part = 0 ; part < clnf_model . hierarchical_models . size ( ) ; + + part )
{
clnf_model . hierarchical_models [ part ] . params_local . setTo ( 0.0 ) ;
}
// calculate the local and global parameters from the generated 2D shape (mapping from the 2D to 3D because camera params are unknown)
clnf_model . pdm . CalcParams ( clnf_model . params_global , bounding_box , clnf_model . params_local , rotation_hypotheses [ hypothesis ] ) ;
bool success = clnf_model . DetectLandmarks ( grayscale_image , depth_image , params ) ;
if ( hypothesis = = 0 | | best_likelihood < clnf_model . model_likelihood )
{
best_likelihood = clnf_model . model_likelihood ;
best_global_parameters = clnf_model . params_global ;
best_local_parameters = clnf_model . params_local . clone ( ) ;
best_detected_landmarks = clnf_model . detected_landmarks . clone ( ) ;
best_landmark_likelihoods = clnf_model . landmark_likelihoods . clone ( ) ;
best_success = success ;
}
for ( size_t part = 0 ; part < clnf_model . hierarchical_models . size ( ) ; + + part )
{
if ( hypothesis = = 0 | | best_likelihood < clnf_model . hierarchical_models [ part ] . model_likelihood )
{
best_likelihood_h [ part ] = clnf_model . hierarchical_models [ part ] . model_likelihood ;
best_global_parameters_h [ part ] = clnf_model . hierarchical_models [ part ] . params_global ;
best_local_parameters_h [ part ] = clnf_model . hierarchical_models [ part ] . params_local . clone ( ) ;
best_detected_landmarks_h [ part ] = clnf_model . hierarchical_models [ part ] . detected_landmarks . clone ( ) ;
best_landmark_likelihoods_h [ part ] = clnf_model . hierarchical_models [ part ] . landmark_likelihoods . clone ( ) ;
}
}
}
// Store the best estimates in the clnf_model
clnf_model . model_likelihood = best_likelihood ;
clnf_model . params_global = best_global_parameters ;
clnf_model . params_local = best_local_parameters . clone ( ) ;
clnf_model . detected_landmarks = best_detected_landmarks . clone ( ) ;
clnf_model . detection_success = best_success ;
clnf_model . landmark_likelihoods = best_landmark_likelihoods . clone ( ) ;
for ( size_t part = 0 ; part < clnf_model . hierarchical_models . size ( ) ; + + part )
{
clnf_model . hierarchical_models [ part ] . params_global = best_global_parameters_h [ part ] ;
clnf_model . hierarchical_models [ part ] . params_local = best_local_parameters_h [ part ] . clone ( ) ;
clnf_model . hierarchical_models [ part ] . detected_landmarks = best_detected_landmarks_h [ part ] . clone ( ) ;
clnf_model . hierarchical_models [ part ] . landmark_likelihoods = best_landmark_likelihoods_h [ part ] . clone ( ) ;
}
return best_success ;
}
bool LandmarkDetector : : DetectLandmarksInImage ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Mat_ < float > depth_image , CLNF & clnf_model , FaceModelParameters & params )
{
cv : : Rect_ < double > bounding_box ;
// If the face detector has not been initialised read it in
if ( clnf_model . face_detector_HAAR . empty ( ) )
{
clnf_model . face_detector_HAAR . load ( params . face_detector_location ) ;
clnf_model . face_detector_location = params . face_detector_location ;
}
// Detect the face first
if ( params . curr_face_detector = = FaceModelParameters : : HOG_SVM_DETECTOR )
{
double confidence ;
LandmarkDetector : : DetectSingleFaceHOG ( bounding_box , grayscale_image , clnf_model . face_detector_HOG , confidence ) ;
}
else if ( params . curr_face_detector = = FaceModelParameters : : HAAR_DETECTOR )
{
LandmarkDetector : : DetectSingleFace ( bounding_box , grayscale_image , clnf_model . face_detector_HAAR ) ;
}
if ( bounding_box . width = = 0 )
{
return false ;
}
else
{
return DetectLandmarksInImage ( grayscale_image , depth_image , bounding_box , clnf_model , params ) ;
}
}
// Versions not using depth images
bool LandmarkDetector : : DetectLandmarksInImage ( const cv : : Mat_ < uchar > & grayscale_image , const cv : : Rect_ < double > bounding_box , CLNF & clnf_model , FaceModelParameters & params )
{
return DetectLandmarksInImage ( grayscale_image , cv : : Mat_ < float > ( ) , bounding_box , clnf_model , params ) ;
}
bool LandmarkDetector : : DetectLandmarksInImage ( const cv : : Mat_ < uchar > & grayscale_image , CLNF & clnf_model , FaceModelParameters & params )
{
return DetectLandmarksInImage ( grayscale_image , cv : : Mat_ < float > ( ) , clnf_model , params ) ;
}