sustaining_gazes/lib/local/LandmarkDetector/src/CCNF_patch_expert.cpp

321 lines
9.1 KiB
C++
Raw Normal View History

2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "CCNF_patch_expert.h"
// OpenCV includes
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
// Local includes
#include "LandmarkDetectorUtils.h"
using namespace LandmarkDetector;
// Copy constructors of neuron and patch expert
CCNF_neuron::CCNF_neuron(const CCNF_neuron& other) : weights(other.weights.clone())
{
this->neuron_type = other.neuron_type;
this->norm_weights = other.norm_weights;
this->bias = other.bias;
this->alpha = other.alpha;
for (std::map<int, cv::Mat_<double> >::const_iterator it = other.weights_dfts.begin(); it != other.weights_dfts.end(); it++)
{
// Make sure the matrix is copied.
this->weights_dfts.insert(std::pair<int, cv::Mat>(it->first, it->second.clone()));
}
}
// Copy constructor
CCNF_patch_expert::CCNF_patch_expert(const CCNF_patch_expert& other) : neurons(other.neurons), window_sizes(other.window_sizes), betas(other.betas)
{
this->width = other.width;
this->height = other.height;
this->patch_confidence = other.patch_confidence;
// Copy the Sigmas in a deep way
for (std::vector<cv::Mat_<float> >::const_iterator it = other.Sigmas.begin(); it != other.Sigmas.end(); it++)
{
// Make sure the matrix is copied.
this->Sigmas.push_back(it->clone());
}
}
// Compute sigmas for all landmarks for a particular view and window size
void CCNF_patch_expert::ComputeSigmas(std::vector<cv::Mat_<float> > sigma_components, int window_size)
{
for(size_t i=0; i < window_sizes.size(); ++i)
{
if( window_sizes[i] == window_size)
return;
}
// Each of the landmarks will have the same connections, hence constant number of sigma components
int n_betas = sigma_components.size();
// calculate the sigmas based on alphas and betas
float sum_alphas = 0;
int n_alphas = this->neurons.size();
// sum the alphas first
for(int a = 0; a < n_alphas; ++a)
{
sum_alphas = sum_alphas + this->neurons[a].alpha;
}
cv::Mat_<float> q1 = sum_alphas * cv::Mat_<float>::eye(window_size*window_size, window_size*window_size);
cv::Mat_<float> q2 = cv::Mat_<float>::zeros(window_size*window_size, window_size*window_size);
for (int b=0; b < n_betas; ++b)
{
q2 = q2 + ((float)this->betas[b]) * sigma_components[b];
}
cv::Mat_<float> SigmaInv = 2 * (q1 + q2);
cv::Mat Sigma_f;
cv::invert(SigmaInv, Sigma_f, cv::DECOMP_CHOLESKY);
window_sizes.push_back(window_size);
Sigmas.push_back(Sigma_f);
}
//===========================================================================
void CCNF_neuron::Read(ifstream &stream)
{
// Sanity check
int read_type;
stream.read ((char*)&read_type, 4);
assert(read_type == 2);
stream.read ((char*)&neuron_type, 4);
stream.read ((char*)&norm_weights, 8);
stream.read ((char*)&bias, 8);
stream.read ((char*)&alpha, 8);
LandmarkDetector::ReadMatBin(stream, weights);
}
//===========================================================================
void CCNF_neuron::Response(cv::Mat_<float> &im, cv::Mat_<double> &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_<float> &resp)
{
int h = im.rows - weights.rows + 1;
int w = im.cols - weights.cols + 1;
// the patch area on which we will calculate reponses
cv::Mat_<float> I;
if(neuron_type == 3)
{
// Perform normalisation across whole patch (ignoring the invalid values indicated by <= 0
cv::Scalar mean;
cv::Scalar std;
// ignore missing values
cv::Mat_<uchar> mask = im > 0;
cv::meanStdDev(im, mean, std, mask);
// if all values the same don't divide by 0
if(std[0] != 0)
{
I = (im - mean[0]) / std[0];
}
else
{
I = (im - mean[0]);
}
I.setTo(0, mask == 0);
}
else
{
if(neuron_type == 0)
{
I = im;
}
else
{
printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__,neuron_type);
abort();
}
}
if(resp.empty())
{
resp.create(h, w);
}
// The response from neuron before activation
if(neuron_type == 3)
{
// In case of depth we use per area, rather than per patch normalisation
matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF); // the linear multiplication, efficient calc of response
}
else
{
matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF_NORMED); // the linear multiplication, efficient calc of response
}
cv::MatIterator_<float> p = resp.begin();
cv::MatIterator_<float> q1 = resp.begin(); // respone for each pixel
cv::MatIterator_<float> q2 = resp.end();
// the logistic function (sigmoid) applied to the response
while(q1 != q2)
{
*p++ = (2 * alpha) * 1.0 /(1.0 + exp( -(*q1++ * norm_weights + bias )));
}
}
//===========================================================================
void CCNF_patch_expert::Read(ifstream &stream, std::vector<int> window_sizes, std::vector<std::vector<cv::Mat_<float> > > sigma_components)
{
// Sanity check
int read_type;
stream.read ((char*)&read_type, 4);
assert(read_type == 5);
// the number of neurons for this patch
int num_neurons;
stream.read ((char*)&width, 4);
stream.read ((char*)&height, 4);
stream.read ((char*)&num_neurons, 4);
if(num_neurons == 0)
{
// empty patch due to landmark being invisible at that orientation
// read an empty int (due to the way things were written out)
stream.read ((char*)&num_neurons, 4);
return;
}
neurons.resize(num_neurons);
for(int i = 0; i < num_neurons; i++)
neurons[i].Read(stream);
int n_sigmas = window_sizes.size();
int n_betas = 0;
if(n_sigmas > 0)
{
n_betas = sigma_components[0].size();
betas.resize(n_betas);
for (int i=0; i < n_betas; ++i)
{
stream.read ((char*)&betas[i], 8);
}
}
// Read the patch confidence
stream.read ((char*)&patch_confidence, 8);
}
//===========================================================================
void CCNF_patch_expert::Response(cv::Mat_<float> &area_of_interest, cv::Mat_<float> &response)
{
int response_height = area_of_interest.rows - height + 1;
int response_width = area_of_interest.cols - width + 1;
if(response.rows != response_height || response.cols != response_width)
{
response.create(response_height, response_width);
}
response.setTo(0);
// the placeholder for the DFT of the image, the integral image, and squared integral image so they don't get recalculated for every response
cv::Mat_<double> area_of_interest_dft;
cv::Mat integral_image, integral_image_sq;
cv::Mat_<float> neuron_response;
// responses from the neural layers
for(size_t i = 0; i < neurons.size(); i++)
{
// Do not bother with neuron response if the alpha is tiny and will not contribute much to overall result
if(neurons[i].alpha > 1e-4)
{
neurons[i].Response(area_of_interest, area_of_interest_dft, integral_image, integral_image_sq, neuron_response);
response = response + neuron_response;
}
}
int s_to_use = -1;
// Find the matching sigma
for(size_t i=0; i < window_sizes.size(); ++i)
{
if(window_sizes[i] == response_height)
{
// Found the correct sigma
s_to_use = i;
break;
}
}
cv::Mat_<float> resp_vec_f = response.reshape(1, response_height * response_width);
cv::Mat out = Sigmas[s_to_use] * resp_vec_f;
response = out.reshape(1, response_height);
// Making sure the response does not have negative numbers
double min;
minMaxIdx(response, &min, 0);
if(min < 0)
{
response = response - min;
}
}