2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
2017-05-09 01:36:23 +00:00
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
2017-05-09 01:36:23 +00:00
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
2016-04-28 19:40:36 +00:00
//
2017-05-09 01:36:23 +00:00
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FaceTrackingVidMulti.cpp : Defines the entry point for the multiple face tracking console application.
# include "LandmarkCoreIncludes.h"
# include <fstream>
# include <sstream>
// OpenCV includes
# include <opencv2/videoio/videoio.hpp> // Video write
# include <opencv2/videoio/videoio_c.h> // Video write
# include <opencv2/imgproc.hpp>
# include <opencv2/highgui/highgui.hpp>
# define INFO_STREAM( stream ) \
std : : cout < < stream < < std : : endl
# define WARN_STREAM( stream ) \
std : : cout < < " Warning: " < < stream < < std : : endl
# define ERROR_STREAM( stream ) \
std : : cout < < " Error: " < < stream < < std : : endl
static void printErrorAndAbort ( const std : : string & error )
{
std : : cout < < error < < std : : endl ;
abort ( ) ;
}
# define FATAL_STREAM( stream ) \
printErrorAndAbort ( std : : string ( " Fatal error: " ) + stream )
using namespace std ;
vector < string > get_arguments ( int argc , char * * argv )
{
vector < string > arguments ;
for ( int i = 0 ; i < argc ; + + i )
{
arguments . push_back ( string ( argv [ i ] ) ) ;
}
return arguments ;
}
void NonOverlapingDetections ( const vector < LandmarkDetector : : CLNF > & clnf_models , vector < cv : : Rect_ < double > > & face_detections )
{
// Go over the model and eliminate detections that are not informative (there already is a tracker there)
for ( size_t model = 0 ; model < clnf_models . size ( ) ; + + model )
{
// See if the detections intersect
cv : : Rect_ < double > model_rect = clnf_models [ model ] . GetBoundingBox ( ) ;
for ( int detection = face_detections . size ( ) - 1 ; detection > = 0 ; - - detection )
{
double intersection_area = ( model_rect & face_detections [ detection ] ) . area ( ) ;
double union_area = model_rect . area ( ) + face_detections [ detection ] . area ( ) - 2 * intersection_area ;
// If the model is already tracking what we're detecting ignore the detection, this is determined by amount of overlap
if ( intersection_area / union_area > 0.5 )
{
face_detections . erase ( face_detections . begin ( ) + detection ) ;
}
}
}
}
int main ( int argc , char * * argv )
{
vector < string > arguments = get_arguments ( argc , argv ) ;
// Some initial parameters that can be overriden from command line
2017-08-01 21:11:02 +00:00
vector < string > files , tracked_videos_output , dummy_out ;
2016-04-28 19:40:36 +00:00
// By default try webcam 0
int device = 0 ;
// cx and cy aren't necessarilly in the image center, so need to be able to override it (start with unit vals and init them if none specified)
float fx = 600 , fy = 600 , cx = 0 , cy = 0 ;
LandmarkDetector : : FaceModelParameters det_params ( arguments ) ;
det_params . use_face_template = true ;
// This is so that the model would not try re-initialising itself
det_params . reinit_video_every = - 1 ;
det_params . curr_face_detector = LandmarkDetector : : FaceModelParameters : : HOG_SVM_DETECTOR ;
vector < LandmarkDetector : : FaceModelParameters > det_parameters ;
det_parameters . push_back ( det_params ) ;
// Get the input output file parameters
bool u ;
2016-09-14 07:00:57 +00:00
string output_codec ;
2017-08-01 21:11:02 +00:00
LandmarkDetector : : get_video_input_output_params ( files , dummy_out , tracked_videos_output , u , output_codec , arguments ) ;
2016-04-28 19:40:36 +00:00
// Get camera parameters
LandmarkDetector : : get_camera_params ( device , fx , fy , cx , cy , arguments ) ;
// The modules that are being used for tracking
vector < LandmarkDetector : : CLNF > clnf_models ;
vector < bool > active_models ;
int num_faces_max = 4 ;
LandmarkDetector : : CLNF clnf_model ( det_parameters [ 0 ] . model_location ) ;
clnf_model . face_detector_HAAR . load ( det_parameters [ 0 ] . face_detector_location ) ;
clnf_model . face_detector_location = det_parameters [ 0 ] . face_detector_location ;
clnf_models . reserve ( num_faces_max ) ;
clnf_models . push_back ( clnf_model ) ;
active_models . push_back ( false ) ;
for ( int i = 1 ; i < num_faces_max ; + + i )
{
clnf_models . push_back ( clnf_model ) ;
active_models . push_back ( false ) ;
det_parameters . push_back ( det_params ) ;
}
// If multiple video files are tracked, use this to indicate if we are done
bool done = false ;
int f_n = - 1 ;
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
bool cx_undefined = false ;
if ( cx = = 0 | | cy = = 0 )
{
cx_undefined = true ;
}
while ( ! done ) // this is not a for loop as we might also be reading from a webcam
{
string current_file ;
// We might specify multiple video files as arguments
if ( files . size ( ) > 0 )
{
f_n + + ;
current_file = files [ f_n ] ;
}
// Do some grabbing
cv : : VideoCapture video_capture ;
if ( current_file . size ( ) > 0 )
{
INFO_STREAM ( " Attempting to read from file: " < < current_file ) ;
video_capture = cv : : VideoCapture ( current_file ) ;
}
else
{
INFO_STREAM ( " Attempting to capture from device: " < < device ) ;
video_capture = cv : : VideoCapture ( device ) ;
// Read a first frame often empty in camera
cv : : Mat captured_image ;
video_capture > > captured_image ;
}
2016-07-29 17:04:25 +00:00
if ( ! video_capture . isOpened ( ) )
{
FATAL_STREAM ( " Failed to open video source " ) ;
return 1 ;
}
2016-04-28 19:40:36 +00:00
else INFO_STREAM ( " Device or file opened " ) ;
cv : : Mat captured_image ;
video_capture > > captured_image ;
// If optical centers are not defined just use center of image
if ( cx_undefined )
{
cx = captured_image . cols / 2.0f ;
cy = captured_image . rows / 2.0f ;
}
int frame_count = 0 ;
// saving the videos
cv : : VideoWriter writerFace ;
if ( ! tracked_videos_output . empty ( ) )
{
2016-09-14 07:00:57 +00:00
try
{
writerFace = cv : : VideoWriter ( tracked_videos_output [ f_n ] , CV_FOURCC ( output_codec [ 0 ] , output_codec [ 1 ] , output_codec [ 2 ] , output_codec [ 3 ] ) , 30 , captured_image . size ( ) , true ) ;
}
catch ( cv : : Exception e )
{
WARN_STREAM ( " Could not open VideoWriter, OUTPUT FILE WILL NOT BE WRITTEN. Currently using codec " < < output_codec < < " , try using an other one (-oc option) " ) ;
}
2016-04-28 19:40:36 +00:00
}
// For measuring the timings
int64 t1 , t0 = cv : : getTickCount ( ) ;
double fps = 10 ;
INFO_STREAM ( " Starting tracking " ) ;
while ( ! captured_image . empty ( ) )
{
// Reading the images
cv : : Mat_ < uchar > grayscale_image ;
cv : : Mat disp_image = captured_image . clone ( ) ;
if ( captured_image . channels ( ) = = 3 )
{
cv : : cvtColor ( captured_image , grayscale_image , CV_BGR2GRAY ) ;
}
else
{
grayscale_image = captured_image . clone ( ) ;
}
vector < cv : : Rect_ < double > > face_detections ;
bool all_models_active = true ;
for ( unsigned int model = 0 ; model < clnf_models . size ( ) ; + + model )
{
if ( ! active_models [ model ] )
{
all_models_active = false ;
}
}
// Get the detections (every 8th frame and when there are free models available for tracking)
if ( frame_count % 8 = = 0 & & ! all_models_active )
{
if ( det_parameters [ 0 ] . curr_face_detector = = LandmarkDetector : : FaceModelParameters : : HOG_SVM_DETECTOR )
{
vector < double > confidences ;
LandmarkDetector : : DetectFacesHOG ( face_detections , grayscale_image , clnf_models [ 0 ] . face_detector_HOG , confidences ) ;
}
else
{
LandmarkDetector : : DetectFaces ( face_detections , grayscale_image , clnf_models [ 0 ] . face_detector_HAAR ) ;
}
}
// Keep only non overlapping detections (also convert to a concurrent vector
NonOverlapingDetections ( clnf_models , face_detections ) ;
vector < tbb : : atomic < bool > > face_detections_used ( face_detections . size ( ) ) ;
// Go through every model and update the tracking
tbb : : parallel_for ( 0 , ( int ) clnf_models . size ( ) , [ & ] ( int model ) {
//for(unsigned int model = 0; model < clnf_models.size(); ++model)
//{
bool detection_success = false ;
// If the current model has failed more than 4 times in a row, remove it
if ( clnf_models [ model ] . failures_in_a_row > 4 )
{
active_models [ model ] = false ;
clnf_models [ model ] . Reset ( ) ;
}
// If the model is inactive reactivate it with new detections
if ( ! active_models [ model ] )
{
for ( size_t detection_ind = 0 ; detection_ind < face_detections . size ( ) ; + + detection_ind )
{
// if it was not taken by another tracker take it (if it is false swap it to true and enter detection, this makes it parallel safe)
if ( face_detections_used [ detection_ind ] . compare_and_swap ( true , false ) = = false )
{
// Reinitialise the model
clnf_models [ model ] . Reset ( ) ;
// This ensures that a wider window is used for the initial landmark localisation
clnf_models [ model ] . detection_success = false ;
2017-08-01 21:11:02 +00:00
detection_success = LandmarkDetector : : DetectLandmarksInVideo ( grayscale_image , face_detections [ detection_ind ] , clnf_models [ model ] , det_parameters [ model ] ) ;
2016-04-28 19:40:36 +00:00
// This activates the model
active_models [ model ] = true ;
// break out of the loop as the tracker has been reinitialised
break ;
}
}
}
else
{
// The actual facial landmark detection / tracking
2017-08-01 21:11:02 +00:00
detection_success = LandmarkDetector : : DetectLandmarksInVideo ( grayscale_image , clnf_models [ model ] , det_parameters [ model ] ) ;
2016-04-28 19:40:36 +00:00
}
} ) ;
// Go through every model and visualise the results
for ( size_t model = 0 ; model < clnf_models . size ( ) ; + + model )
{
// Visualising the results
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = clnf_models [ model ] . detection_certainty ;
double visualisation_boundary = - 0.1 ;
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if ( detection_certainty < visualisation_boundary )
{
LandmarkDetector : : Draw ( disp_image , clnf_models [ model ] ) ;
if ( detection_certainty > 1 )
detection_certainty = 1 ;
if ( detection_certainty < - 1 )
detection_certainty = - 1 ;
detection_certainty = ( detection_certainty + 1 ) / ( visualisation_boundary + 1 ) ;
// A rough heuristic for box around the face width
int thickness = ( int ) std : : ceil ( 2.0 * ( ( double ) captured_image . cols ) / 640.0 ) ;
// Work out the pose of the head from the tracked model
cv : : Vec6d pose_estimate = LandmarkDetector : : GetCorrectedPoseWorld ( clnf_models [ model ] , fx , fy , cx , cy ) ;
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector : : DrawBox ( disp_image , pose_estimate , cv : : Scalar ( ( 1 - detection_certainty ) * 255.0 , 0 , detection_certainty * 255 ) , thickness , fx , fy , cx , cy ) ;
}
}
// Work out the framerate
if ( frame_count % 10 = = 0 )
{
t1 = cv : : getTickCount ( ) ;
fps = 10.0 / ( double ( t1 - t0 ) / cv : : getTickFrequency ( ) ) ;
t0 = t1 ;
}
// Write out the framerate on the image before displaying it
char fpsC [ 255 ] ;
sprintf ( fpsC , " %d " , ( int ) fps ) ;
string fpsSt ( " FPS: " ) ;
fpsSt + = fpsC ;
2016-07-31 17:11:14 +00:00
cv : : putText ( disp_image , fpsSt , cv : : Point ( 10 , 20 ) , CV_FONT_HERSHEY_SIMPLEX , 0.5 , CV_RGB ( 255 , 0 , 0 ) , 1 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
int num_active_models = 0 ;
for ( size_t active_model = 0 ; active_model < active_models . size ( ) ; active_model + + )
{
if ( active_models [ active_model ] )
{
num_active_models + + ;
}
}
char active_m_C [ 255 ] ;
sprintf ( active_m_C , " %d " , num_active_models ) ;
string active_models_st ( " Active models: " ) ;
active_models_st + = active_m_C ;
2016-07-31 17:11:14 +00:00
cv : : putText ( disp_image , active_models_st , cv : : Point ( 10 , 60 ) , CV_FONT_HERSHEY_SIMPLEX , 0.5 , CV_RGB ( 255 , 0 , 0 ) , 1 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
if ( ! det_parameters [ 0 ] . quiet_mode )
{
cv : : namedWindow ( " tracking_result " , 1 ) ;
cv : : imshow ( " tracking_result " , disp_image ) ;
}
// output the tracked video
if ( ! tracked_videos_output . empty ( ) )
{
writerFace < < disp_image ;
}
video_capture > > captured_image ;
// detect key presses
char character_press = cv : : waitKey ( 1 ) ;
// restart the trackers
if ( character_press = = ' r ' )
{
for ( size_t i = 0 ; i < clnf_models . size ( ) ; + + i )
{
clnf_models [ i ] . Reset ( ) ;
active_models [ i ] = false ;
}
}
// quit the application
else if ( character_press = = ' q ' )
{
return ( 0 ) ;
}
// Update the frame count
frame_count + + ;
}
frame_count = 0 ;
// Reset the model, for the next video
for ( size_t model = 0 ; model < clnf_models . size ( ) ; + + model )
{
clnf_models [ model ] . Reset ( ) ;
active_models [ model ] = false ;
}
// break out of the loop if done with all the files
if ( f_n = = files . size ( ) - 1 )
{
done = true ;
}
}
return 0 ;
}