sustaining_gazes/matlab_runners/Head Pose Experiments/calcIctError.m

74 lines
2.5 KiB
Mathematica
Raw Normal View History

function [meanError, all_rot_preds, all_rot_gts, meanErrors, all_errors, rels_all, seq_ids] = calcIctError(resDir, gtDir)
2016-04-28 21:40:36 +02:00
%CALCICTERROR Summary of this function goes here
% Detailed explanation goes here
polhemus = 'polhemusNorm.csv';
sequences = dir([resDir '*.txt']);
rotMeanErr = zeros(numel(sequences),3);
rotRMS = zeros(numel(sequences),3);
rot = cell(1,numel(sequences));
rotg = cell(1,numel(sequences));
rels_all = [];
seq_ids = {};
2016-04-28 21:40:36 +02:00
for i = 1:numel(sequences)
[~, name,~] = fileparts(sequences(i).name);
[frame t, rels, sc tx ty tz rx ry rz] = textread([resDir '/' sequences(i).name], '%f, %f, %f, %f, %f, %f, %f, %f, %f, %f', 'headerlines', 1);
[txg tyg tzg rxg ryg rzg] = textread([gtDir name '/' polhemus], '%f,%f,%f,%f,%f,%f');
% the reliabilities of head pose
rels_all = cat(1, rels_all, rels);
rot{i} = [rx ry rz];
rotg{i} = [rxg ryg rzg];
% Correct the first frame so it corresponds to (0,0,0), as slightly
% different pose might be assumed frontal and this corrects for
% that
% Work out the correction matrix for ground truth
rot_corr_gt = Euler2Rot(rotg{i}(1,:));
for r_e = 1:size(rotg{i},1)
rot_curr_gt = Euler2Rot(rotg{i}(r_e,:));
rot_new_gt = rot_corr_gt' * rot_curr_gt;
rotg{i}(r_e,:) = Rot2Euler(rot_new_gt);
end
% Work out the correction matrix for estimates
rot_corr_est = Euler2Rot(rot{i}(1,:));
for r_e = 1:size(rot{i},1)
rot_curr_est = Euler2Rot(rot{i}(r_e,:));
rot_new_est = rot_corr_est' * rot_curr_est;
rot{i}(r_e,:) = Rot2Euler(rot_new_est);
end
% Convert the ground truth and estimates to degrees
rot{i} = rot{i} * (180/ pi);
rotg{i} = rotg{i} * (180/ pi);
% Now compute the errors
rotMeanErr(i,:) = mean(abs((rot{i}(:,:)-rotg{i}(:,:))));
rotRMS(i,:) = sqrt(mean(((rot{i}(:,:)-rotg{i}(:,:))).^2));
seq_ids = cat(1, seq_ids, repmat({[name 'ict']}, size(rot{i},1), 1));
2016-04-28 21:40:36 +02:00
end
allRot = cell2mat(rot');
allRotg = cell2mat(rotg');
meanErrors = rotMeanErr;
meanError = mean(abs((allRot(:,:)-allRotg(:,:))));
all_errors = abs(allRot-allRotg);
rmsError = sqrt(mean(((allRot(:,:)-allRotg(:,:))).^2));
errorVariance = var(abs((allRot(:,:)-allRotg(:,:))));
all_rot_preds = allRot;
all_rot_gts = allRotg;
end