605 lines
25 KiB
C
605 lines
25 KiB
C
|
// Copyright (C) 2007 Davis E. King (davis@dlib.net)
|
||
|
// License: Boost Software License See LICENSE.txt for the full license.
|
||
|
#undef DLIB_SVm_ABSTRACT_
|
||
|
#ifdef DLIB_SVm_ABSTRACT_
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <limits>
|
||
|
#include <sstream>
|
||
|
#include "../matrix/matrix_abstract.h"
|
||
|
#include "../algs.h"
|
||
|
#include "../serialize.h"
|
||
|
#include "function_abstract.h"
|
||
|
#include "kernel_abstract.h"
|
||
|
#include "svm_nu_trainer_abstract.h"
|
||
|
|
||
|
namespace dlib
|
||
|
{
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U
|
||
|
>
|
||
|
bool is_learning_problem (
|
||
|
const T& x,
|
||
|
const U& x_labels
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix or something convertible to a matrix via mat()
|
||
|
- U == a matrix or something convertible to a matrix via mat()
|
||
|
ensures
|
||
|
- returns true if all of the following are true and false otherwise:
|
||
|
- is_col_vector(x) == true
|
||
|
- is_col_vector(x_labels) == true
|
||
|
- x.size() == x_labels.size()
|
||
|
- x.size() > 0
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U
|
||
|
>
|
||
|
bool is_binary_classification_problem (
|
||
|
const T& x,
|
||
|
const U& x_labels
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix or something convertible to a matrix via mat()
|
||
|
- U == a matrix or something convertible to a matrix via mat()
|
||
|
ensures
|
||
|
- returns true if all of the following are true and false otherwise:
|
||
|
- is_learning_problem(x, x_labels) == true
|
||
|
- x.size() > 1
|
||
|
- there exists at least one sample from both the +1 and -1 classes.
|
||
|
(i.e. all samples can't have the same label)
|
||
|
- for all valid i:
|
||
|
- x_labels(i) == -1 or +1
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename sequence_type
|
||
|
>
|
||
|
bool is_sequence_labeling_problem (
|
||
|
const std::vector<sequence_type>& samples,
|
||
|
const std::vector<std::vector<unsigned long> >& labels
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- returns true if all of the following are true and false otherwise:
|
||
|
- is_learning_problem(samples, labels) == true
|
||
|
- for all valid i:
|
||
|
- samples[i].size() == labels[i].size()
|
||
|
(i.e. The size of a label sequence need to match the size of
|
||
|
its corresponding sample sequence)
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename sequence_type
|
||
|
>
|
||
|
bool is_sequence_segmentation_problem (
|
||
|
const std::vector<sequence_type>& samples,
|
||
|
const std::vector<std::vector<std::pair<unsigned long,unsigned long> > >& segments
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- Note that a sequence segmentation problem is a task where you are given a
|
||
|
sequence of objects (e.g. words in a sentence) and your task is to find
|
||
|
certain types of sub-sequences (e.g. proper names).
|
||
|
- returns true if all of the following are true and false otherwise:
|
||
|
- is_learning_problem(samples, segments) == true
|
||
|
- for all valid i and j:
|
||
|
- We interpret segments[i][j] as defining a half open range starting
|
||
|
with segments[i][j].first and ending just before segments[i][j].second.
|
||
|
- segments[i][j].first < segments[i][j].second
|
||
|
- segments[i][j].second <= samples[i].size()
|
||
|
(i.e. Each segment must be contained within its associated sequence)
|
||
|
- segments[i][j] does not overlap with any of the other ranges in
|
||
|
segments[i].
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename lhs_type,
|
||
|
typename rhs_type
|
||
|
>
|
||
|
bool is_assignment_problem (
|
||
|
const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
|
||
|
const std::vector<std::vector<long> >& labels
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- Note that an assignment problem is a task to associate each element of samples[i].first
|
||
|
to an element of samples[i].second, or to indicate that the element doesn't associate
|
||
|
with anything. Therefore, labels[i] should contain the association information for
|
||
|
samples[i].
|
||
|
- This function returns true if all of the following are true and false otherwise:
|
||
|
- is_learning_problem(samples, labels) == true
|
||
|
- for all valid i:
|
||
|
- samples[i].first.size() == labels[i].size()
|
||
|
- for all valid j:
|
||
|
-1 <= labels[i][j] < samples[i].second.size()
|
||
|
(A value of -1 indicates that samples[i].first[j] isn't associated with anything.
|
||
|
All other values indicate the associating element of samples[i].second)
|
||
|
- All elements of labels[i] which are not equal to -1 are unique. That is,
|
||
|
multiple elements of samples[i].first can't associate to the same element
|
||
|
in samples[i].second.
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename lhs_type,
|
||
|
typename rhs_type
|
||
|
>
|
||
|
bool is_forced_assignment_problem (
|
||
|
const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
|
||
|
const std::vector<std::vector<long> >& labels
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- A regular assignment problem is allowed to indicate that all elements of
|
||
|
samples[i].first don't associate to anything. However, a forced assignment
|
||
|
problem is required to always associate an element of samples[i].first to
|
||
|
something in samples[i].second if there is an element of samples[i].second
|
||
|
that hasn't already been associated to something.
|
||
|
- This function returns true if all of the following are true and false otherwise:
|
||
|
- is_assignment_problem(samples, labels) == true
|
||
|
- for all valid i:
|
||
|
- let N denote the number of elements in labels[i] that are not equal to -1.
|
||
|
- min(samples[i].first.size(), samples[i].second.size()) == N
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename detection_type_,
|
||
|
typename label_type_ = long
|
||
|
>
|
||
|
struct labeled_detection
|
||
|
{
|
||
|
/*!
|
||
|
WHAT THIS OBJECT REPRESENTS
|
||
|
This is a simple object, like std::pair, it just holds two objects. It
|
||
|
serves the same purpose as std::pair except that it has informative names
|
||
|
describing its two members and is intended for use with track association
|
||
|
problems.
|
||
|
!*/
|
||
|
|
||
|
typedef detection_type_ detection_type;
|
||
|
typedef label_type_ label_type;
|
||
|
|
||
|
detection_type det;
|
||
|
label_type label;
|
||
|
};
|
||
|
|
||
|
template <
|
||
|
typename detection_type_,
|
||
|
typename label_type_
|
||
|
>
|
||
|
void serialize (const labeled_detection<detection_type_,label_type_>& item, std::ostream& out);
|
||
|
/*!
|
||
|
provides serialization support
|
||
|
!*/
|
||
|
|
||
|
template <
|
||
|
typename detection_type_,
|
||
|
typename label_type_
|
||
|
>
|
||
|
void deserialize (labeled_detection<detection_type_,label_type_>& item, std::istream& in);
|
||
|
/*!
|
||
|
provides deserialization support
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename detection_type,
|
||
|
typename label_type
|
||
|
>
|
||
|
bool is_track_association_problem (
|
||
|
const std::vector<std::vector<labeled_detection<detection_type,label_type> > >& samples
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- In this tracking model you get a set of detections at each time step and are
|
||
|
expected to associate each detection with a track or have it spawn a new
|
||
|
track. Therefore, a track association problem is a machine learning problem
|
||
|
where you are given a dataset of example input detections and are expected to
|
||
|
learn to perform the proper detection to track association.
|
||
|
- This function checks if samples can form a valid dataset for this machine
|
||
|
learning problem and returns true if this is the case. This means we should
|
||
|
interpret samples in the following way:
|
||
|
- samples is a track history and for each valid i:
|
||
|
- samples[i] is a set of labeled detections from the i-th time step.
|
||
|
Each detection has been labeled with its "true object identity".
|
||
|
That is, all the detection throughout the history with the same
|
||
|
label_type value are detections from the same object and therefore
|
||
|
should be associated to the same track.
|
||
|
Putting this all together, samples is a valid track association learning
|
||
|
problem if and only if the following are all true:
|
||
|
- samples.size() > 0
|
||
|
- There are at least two values, i and j such that:
|
||
|
- i != j
|
||
|
- samples[i].size() > 0
|
||
|
- samples[j].size() > 0
|
||
|
Or in other words, there needs to be some detections in samples somewhere
|
||
|
or it is impossible to learn anything.
|
||
|
- for all valid i:
|
||
|
- for all valid j and k where j!=k:
|
||
|
- samples[i][j].label != samples[i][k].label
|
||
|
(i.e. the label_type values must be unique within each time step.
|
||
|
Or in other words, you can't have two detections on the same
|
||
|
object in a single time step.)
|
||
|
!*/
|
||
|
|
||
|
template <
|
||
|
typename detection_type,
|
||
|
typename label_type
|
||
|
>
|
||
|
bool is_track_association_problem (
|
||
|
const std::vector<std::vector<std::vector<labeled_detection<detection_type,label_type> > > >& samples
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- returns true if is_track_association_problem(samples[i]) == true for all
|
||
|
valid i and false otherwise.
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
double platt_scale (
|
||
|
const std::pair<double,double>& params,
|
||
|
const double score
|
||
|
);
|
||
|
/*!
|
||
|
ensures
|
||
|
- returns 1/(1 + std::exp(params.first*score + params.second))
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <typename T, typename alloc>
|
||
|
std::pair<double,double> learn_platt_scaling (
|
||
|
const std::vector<T,alloc>& scores,
|
||
|
const std::vector<T,alloc>& labels
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T should be either float, double, or long double
|
||
|
- is_binary_classification_problem(scores,labels) == true
|
||
|
ensures
|
||
|
- This function learns to map scalar values into well calibrated probabilities
|
||
|
using Platt scaling. In particular, it returns a params object such that,
|
||
|
for all valid i:
|
||
|
- platt_scale(params,scores[i]) == the scaled version of the scalar value
|
||
|
scores[i]. That is, the output is a number between 0 and 1. In
|
||
|
particular, platt_scale(params,scores[i]) is meant to represent the
|
||
|
probability that labels[i] == +1.
|
||
|
- This function is an implementation of the algorithm described in the following
|
||
|
papers:
|
||
|
Probabilistic Outputs for Support Vector Machines and Comparisons to
|
||
|
Regularized Likelihood Methods by John C. Platt. March 26, 1999
|
||
|
|
||
|
A Note on Platt's Probabilistic Outputs for Support Vector Machines
|
||
|
by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename trainer_type,
|
||
|
typename sample_vector_type,
|
||
|
typename label_vector_type
|
||
|
>
|
||
|
const probabilistic_function<typename trainer_type::trained_function_type>
|
||
|
train_probabilistic_decision_function (
|
||
|
const trainer_type& trainer,
|
||
|
const sample_vector_type& x,
|
||
|
const label_vector_type& y,
|
||
|
const long folds
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- 1 < folds <= x.size()
|
||
|
- is_binary_classification_problem(x,y) == true
|
||
|
- x and y must be std::vector objects or types with a compatible interface.
|
||
|
- trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
|
||
|
ensures
|
||
|
- trains a classifier given the training samples in x and labels in y.
|
||
|
- returns a probabilistic_decision_function that represents the trained classifier.
|
||
|
- The parameters of the probability model are estimated by performing k-fold
|
||
|
cross validation.
|
||
|
- The number of folds used is given by the folds argument.
|
||
|
- This function is implemented using learn_platt_scaling()
|
||
|
throws
|
||
|
- any exceptions thrown by trainer.train()
|
||
|
- std::bad_alloc
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename trainer_type
|
||
|
>
|
||
|
trainer_adapter_probabilistic<trainer_type> probabilistic (
|
||
|
const trainer_type& trainer,
|
||
|
const long folds
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- 1 < folds <= x.size()
|
||
|
- trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
|
||
|
ensures
|
||
|
- returns a trainer adapter TA such that calling TA.train(samples, labels)
|
||
|
returns the same object as calling train_probabilistic_decision_function(trainer,samples,labels,folds).
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// Miscellaneous functions
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename trainer_type,
|
||
|
typename in_sample_vector_type,
|
||
|
typename in_scalar_vector_type
|
||
|
>
|
||
|
const matrix<double,1,2> cross_validate_trainer (
|
||
|
const trainer_type& trainer,
|
||
|
const in_sample_vector_type& x,
|
||
|
const in_scalar_vector_type& y,
|
||
|
const long folds
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- is_binary_classification_problem(x,y) == true
|
||
|
- 1 < folds <= std::min(sum(y>0),sum(y<0))
|
||
|
(e.g. There must be at least as many examples of each class as there are folds)
|
||
|
- trainer_type == some kind of binary classification trainer object (e.g. svm_nu_trainer)
|
||
|
ensures
|
||
|
- performs k-fold cross validation by using the given trainer to solve the
|
||
|
given binary classification problem for the given number of folds.
|
||
|
Each fold is tested using the output of the trainer and the average
|
||
|
classification accuracy from all folds is returned.
|
||
|
- The average accuracy is computed by running test_binary_decision_function()
|
||
|
on each fold and its output is averaged and returned.
|
||
|
- The number of folds used is given by the folds argument.
|
||
|
throws
|
||
|
- any exceptions thrown by trainer.train()
|
||
|
- std::bad_alloc
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename dec_funct_type,
|
||
|
typename in_sample_vector_type,
|
||
|
typename in_scalar_vector_type
|
||
|
>
|
||
|
const matrix<double,1,2> test_binary_decision_function (
|
||
|
const dec_funct_type& dec_funct,
|
||
|
const in_sample_vector_type& x_test,
|
||
|
const in_scalar_vector_type& y_test
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- is_binary_classification_problem(x_test,y_test) == true
|
||
|
- dec_funct_type == some kind of decision function object (e.g. decision_function)
|
||
|
ensures
|
||
|
- Tests the given decision function by calling it on the x_test and y_test samples.
|
||
|
The output of dec_funct is interpreted as a prediction for the +1 class
|
||
|
if its output is >= 0 and as a prediction for the -1 class otherwise.
|
||
|
- The test accuracy is returned in a row vector, let us call it R. Both
|
||
|
quantities in R are numbers between 0 and 1 which represent the fraction
|
||
|
of examples correctly classified. R(0) is the fraction of +1 examples
|
||
|
correctly classified and R(1) is the fraction of -1 examples correctly
|
||
|
classified.
|
||
|
throws
|
||
|
- std::bad_alloc
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples,
|
||
|
U& labels
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- U == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- if samples or labels are matrix objects then is_vector(samples) == true and
|
||
|
is_vector(labels) == true
|
||
|
- samples.size() == labels.size()
|
||
|
ensures
|
||
|
- randomizes the order of the samples and labels but preserves
|
||
|
the pairing between each sample and its label
|
||
|
- A default initialized random number generator is used to perform the randomizing.
|
||
|
Note that this means that each call this this function does the same thing.
|
||
|
That is, the random number generator always uses the same seed.
|
||
|
- for all valid i:
|
||
|
- let r == the random index samples(i) was moved to. then:
|
||
|
- #labels(r) == labels(i)
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U,
|
||
|
typename rand_type
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples,
|
||
|
U& labels,
|
||
|
rand_type& rnd
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- U == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- if samples or labels are matrix objects then is_vector(samples) == true and
|
||
|
is_vector(labels) == true
|
||
|
- samples.size() == labels.size()
|
||
|
- rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
|
||
|
ensures
|
||
|
- randomizes the order of the samples and labels but preserves
|
||
|
the pairing between each sample and its label
|
||
|
- the given rnd random number generator object is used to do the randomizing
|
||
|
- for all valid i:
|
||
|
- let r == the random index samples(i) was moved to. then:
|
||
|
- #labels(r) == labels(i)
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- if (samples is a matrix) then
|
||
|
- is_vector(samples) == true
|
||
|
ensures
|
||
|
- randomizes the order of the elements inside samples
|
||
|
- A default initialized random number generator is used to perform the randomizing.
|
||
|
Note that this means that each call this this function does the same thing.
|
||
|
That is, the random number generator always uses the same seed.
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename rand_type
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples,
|
||
|
rand_type& rnd
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
|
||
|
- if (samples is a matrix) then
|
||
|
- is_vector(samples) == true
|
||
|
ensures
|
||
|
- randomizes the order of the elements inside samples
|
||
|
- the given rnd random number generator object is used to do the randomizing
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U,
|
||
|
typename V
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples,
|
||
|
U& labels,
|
||
|
V& auxiliary
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- U == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- V == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- if (samples, labels, or auxiliary are matrix objects) then
|
||
|
- is_vector(samples) == true
|
||
|
- is_vector(labels) == true
|
||
|
- is_vector(auxiliary) == true
|
||
|
- samples.size() == labels.size() == auxiliary.size()
|
||
|
ensures
|
||
|
- randomizes the order of the samples, labels, and auxiliary but preserves the
|
||
|
pairing between each sample, its label, and its auxiliary value.
|
||
|
- A default initialized random number generator is used to perform the
|
||
|
randomizing. Note that this means that each call this this function does the
|
||
|
same thing. That is, the random number generator always uses the same seed.
|
||
|
- for all valid i:
|
||
|
- let r == the random index samples(i) was moved to. then:
|
||
|
- #labels(r) == labels(i)
|
||
|
- #auxiliary(r) == auxiliary(i)
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
template <
|
||
|
typename T,
|
||
|
typename U,
|
||
|
typename V,
|
||
|
typename rand_type
|
||
|
>
|
||
|
void randomize_samples (
|
||
|
T& samples,
|
||
|
U& labels,
|
||
|
V& auxiliary,
|
||
|
rand_type& rnd
|
||
|
);
|
||
|
/*!
|
||
|
requires
|
||
|
- T == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- U == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- V == a matrix object or an object compatible with std::vector that contains
|
||
|
a swappable type.
|
||
|
- if (samples, labels, or auxiliary are matrix objects) then
|
||
|
- is_vector(samples) == true
|
||
|
- is_vector(labels) == true
|
||
|
- is_vector(auxiliary) == true
|
||
|
- samples.size() == labels.size() == auxiliary.size()
|
||
|
- rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
|
||
|
ensures
|
||
|
- randomizes the order of the samples, labels, and auxiliary but preserves the
|
||
|
pairing between each sample, its label, and its auxiliary value.
|
||
|
- the given rnd random number generator object is used to do the randomizing
|
||
|
- for all valid i:
|
||
|
- let r == the random index samples(i) was moved to. then:
|
||
|
- #labels(r) == labels(i)
|
||
|
- #auxiliary(r) == auxiliary(i)
|
||
|
!*/
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif // DLIB_SVm_ABSTRACT_
|
||
|
|
||
|
|