68 lines
2.4 KiB
Mathematica
68 lines
2.4 KiB
Mathematica
|
function [meanError, all_rot_preds, all_rot_gts, all_errors, rels_all] = calcBUerror(resDir, gtDir)
|
||
|
|
||
|
seqNames = {'jam1','jam2','jam3','jam4','jam5','jam6','jam7','jam8','jam9', ...
|
||
|
'jim1','jim2','jim3','jim4','jim5','jim6','jim7','jim8','jim9', ...
|
||
|
'llm1','llm2','llm3','llm4','llm5','llm6','llm7','llm8','llm9', ...
|
||
|
'ssm1','ssm2','ssm3','ssm4','ssm5','ssm6','ssm7','ssm8','ssm9', ...
|
||
|
'vam1','vam2','vam3','vam4','vam5','vam6','vam7','vam8','vam9'};
|
||
|
|
||
|
rotMeanErr = zeros(numel(seqNames),3);
|
||
|
rotRMS = zeros(numel(seqNames),3);
|
||
|
rot = cell(1,numel(seqNames));
|
||
|
rotg = cell(1,numel(seqNames));
|
||
|
rels_all = [];
|
||
|
|
||
|
for i = 1:numel(seqNames)
|
||
|
|
||
|
[frame t, rels, sc tx ty tz rx ry rz] = textread([resDir seqNames{i} '.txt'], '%f, %f, %f, %f, %f, %f, %f, %f, %f, %f', 'headerlines', 1);
|
||
|
posesGround = load ([gtDir seqNames{i} '.dat']);
|
||
|
|
||
|
% the reliabilities of head pose
|
||
|
rels_all = cat(1, rels_all, rels);
|
||
|
|
||
|
rot{i} = [rx ry rz];
|
||
|
% Flip because of different conventions
|
||
|
rot{i}(:,2) = -rot{i}(:,2);
|
||
|
rot{i}(:,3) = -rot{i}(:,3);
|
||
|
|
||
|
% Convert to radians
|
||
|
rotg{i} = posesGround(2:end,[7 6 5]) * (pi/180);
|
||
|
|
||
|
% Correct the first frame so it corresponds to (0,0,0), as slightly
|
||
|
% different pose might be assumed frontal and this corrects for
|
||
|
% that
|
||
|
|
||
|
% Work out the correction matrix for ground truth
|
||
|
rot_corr_gt = Euler2Rot(rotg{i}(1,:));
|
||
|
for r_e = 1:size(rotg{i},1)
|
||
|
rot_curr_gt = Euler2Rot(rotg{i}(r_e,:));
|
||
|
rot_new_gt = rot_corr_gt' * rot_curr_gt;
|
||
|
rotg{i}(r_e,:) = Rot2Euler(rot_new_gt);
|
||
|
end
|
||
|
|
||
|
% Work out the correction matrix for estimates
|
||
|
rot_corr_est = Euler2Rot(rot{i}(1,:));
|
||
|
for r_e = 1:size(rot{i},1)
|
||
|
rot_curr_est = Euler2Rot(rot{i}(r_e,:));
|
||
|
rot_new_est = rot_corr_est' * rot_curr_est;
|
||
|
rot{i}(r_e,:) = Rot2Euler(rot_new_est);
|
||
|
end
|
||
|
|
||
|
% Convert to degrees
|
||
|
rotg{i} = rotg{i} * 180 / pi;
|
||
|
rot{i} = rot{i} * 180 / pi;
|
||
|
|
||
|
rotMeanErr(i,:) = mean(abs((rot{i}(:,:)-rotg{i}(:,:))));
|
||
|
rotRMS(i,:) = sqrt(mean(((rot{i}(:,:)-rotg{i}(:,:))).^2));
|
||
|
|
||
|
end
|
||
|
allRot = cell2mat(rot');
|
||
|
allRotg = cell2mat(rotg');
|
||
|
|
||
|
meanError = mean(abs((allRot(:,:)-allRotg(:,:))));
|
||
|
all_errors = abs(allRot-allRotg);
|
||
|
rmsError = sqrt(mean(((allRot(:,:)-allRotg(:,:))).^2));
|
||
|
errorVariance = var(abs((allRot(:,:)-allRotg(:,:))));
|
||
|
|
||
|
all_rot_preds = allRot;
|
||
|
all_rot_gts = allRotg;
|