sustaining_gazes/matlab_version/pdm_generation/PDM_helpers/ProcrustesAnalysis3D.m

140 lines
3.6 KiB
Mathematica
Raw Normal View History

2016-04-28 19:40:36 +00:00
function [ normX, normY, normZ, meanShape, Transform ] = ProcrustesAnalysis3D( x, y, z, tangentSpace, meanShape )
%PROCRUSTESANALYSIS3D Summary of this function goes here
% Detailed explanation goes here
meanProvided = false;
if(nargin > 4)
meanProvided = true;
end
% Translate all elements to origin
normX = zeros(size(x));
normY = zeros(size(y));
normZ = zeros(size(z));
for i = 1:size(x,1)
offsetX = mean(x(i,:));
offsetY = mean(y(i,:));
offsetZ = mean(z(i,:));
Transform.offsetX(i) = offsetX;
Transform.offsetY(i) = offsetY;
Transform.offsetZ(i) = offsetZ;
normX(i,:) = x(i,:) - offsetX;
normY(i,:) = y(i,:) - offsetY;
normZ(i,:) = z(i,:) - offsetZ;
end
% Rotate elements untill all of them have the same orientation
% the initial estimate of rotation would be the first element
% if change is less than 1% stop (shouldn't take more than 2 steps)
change = 0.1;
if(~meanProvided)
meanShape = [ mean(normX); mean(normY); mean(normZ) ]';
end
% scale all the shapes to mean shape
% Get the Frobenius norm, to scale the shapes to mean size (still want to
% retain mm)
meanScale = norm(meanShape, 'fro');
for i = 1:size(x,1)
scale = norm([normX(i,:) normY(i,:) normZ(i,:)], 'fro')/meanScale;
normX(i,:) = normX(i,:)/scale;
normY(i,:) = normY(i,:)/scale;
normZ(i,:) = normZ(i,:)/scale;
end
Transform.RotationX = zeros(size(x,1),1);
Transform.RotationY = zeros(size(x,1),1);
Transform.RotationZ = zeros(size(x,1),1);
for i = 1:30
% align all of the shapes to the mean shape
% remember all orientations to get the mean one (in euler angle form, pitch, yaw roll)
orientationsX = zeros(size(normX,1),1);
orientationsY = zeros(size(normX,1),1);
orientationsZ = zeros(size(normX,1),1);
for j = 1:size(x,1)
currentShape = [normX(j,:); normY(j,:); normZ(j,:)]';
% we want to align the current shape to the mean one
[ R, T ] = AlignShapesKabsch(currentShape, meanShape);
eulers = Rot2Euler(R);
orientationsX(j) = eulers(1);
orientationsY(j) = eulers(2);
orientationsZ(j) = eulers(3);
Transform.RotationX(j) = eulers(1);
Transform.RotationY(j) = eulers(2);
Transform.RotationZ(j) = eulers(3);
currentShape = R * currentShape';
normX(j,:) = currentShape(1,:);
normY(j,:) = currentShape(2,:);
normZ(j,:) = currentShape(3,:);
end
% recalculate the mean shape
% if(~meanProvided)
oldMean = meanShape;
meanShape = [mean(normX); mean(normY); mean(normZ)]';
meanScale = norm(meanShape, 'fro');
% end
for j = 1:size(x,1)
scale = norm([normX(j,:) normY(j,:) normZ(j,:)], 'fro')/meanScale;
normX(j,:) = normX(j,:)/scale;
normY(j,:) = normY(j,:)/scale;
normZ(j,:) = normZ(j,:)/scale;
end
if(i==1 && ~meanProvided)
% rotate the mean shape to mean rotation
meanOrientationX = mean(orientationsX);
meanOrientationY = mean(orientationsY);
meanOrientationZ = mean(orientationsZ);
R = Euler2Rot([meanOrientationX, meanOrientationY, meanOrientationZ]);
meanShape = (R * meanShape')';
end
% find frobenious norm
diff = norm(oldMean - meanShape, 'fro');
if(diff/norm(oldMean,'fro') < change)
break;
end
end
% transform to tangent space to preserve linearities
% get the scaling factors for each shape
if(tangentSpace)
[ normX, normY, normZ] = TangentSpaceTransform(normX, normY, normZ, meanShape);
end
end