2016-04-28 19:40:36 +00:00
|
|
|
clear
|
|
|
|
addpath('../PDM_helpers/');
|
|
|
|
addpath(genpath('../fitting/'));
|
|
|
|
addpath('../models/');
|
|
|
|
addpath(genpath('../face_detection'));
|
|
|
|
addpath('../CCNF/');
|
|
|
|
|
|
|
|
%% loading the patch experts
|
|
|
|
|
|
|
|
[clmParams, pdm] = Load_CLM_params_wild();
|
|
|
|
|
|
|
|
% An accurate CCNF (or CLNF) model
|
|
|
|
[patches] = Load_Patch_Experts( '../models/general/', 'ccnf_patches_*_general.mat', [], [], clmParams);
|
|
|
|
% A simpler (but less accurate SVR)
|
|
|
|
% [patches] = Load_Patch_Experts( '../models/general/', 'svr_patches_*_general.mat', [], [], clmParams);
|
|
|
|
|
|
|
|
clmParams.multi_modal_types = patches(1).multi_modal_types;
|
|
|
|
|
|
|
|
%%
|
2017-05-09 01:36:23 +00:00
|
|
|
root_dir = '../../samples/';
|
|
|
|
images = dir([root_dir, '*.jpg']);
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
verbose = true;
|
|
|
|
|
|
|
|
for img=1:numel(images)
|
2017-05-09 01:36:23 +00:00
|
|
|
image_orig = imread([root_dir images(img).name]);
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
% First attempt to use the Matlab one (fastest but not as accurate, if not present use yu et al.)
|
|
|
|
[bboxs, det_shapes] = detect_faces(image_orig, {'cascade', 'yu'});
|
|
|
|
% Zhu and Ramanan and Yu et al. are slower, but also more accurate
|
|
|
|
% and can be used when vision toolbox is unavailable
|
|
|
|
% [bboxs, det_shapes] = detect_faces(image_orig, {'yu', 'zhu'});
|
|
|
|
|
|
|
|
% The complete set that tries all three detectors starting with fastest
|
|
|
|
% and moving onto slower ones if fastest can't detect anything
|
|
|
|
% [bboxs, det_shapes] = detect_faces(image_orig, {'cascade', 'yu', 'zhu'});
|
|
|
|
|
|
|
|
if(size(image_orig,3) == 3)
|
|
|
|
image = rgb2gray(image_orig);
|
|
|
|
end
|
|
|
|
|
|
|
|
%%
|
|
|
|
|
|
|
|
if(verbose)
|
|
|
|
f = figure;
|
|
|
|
if(max(image(:)) > 1)
|
|
|
|
imshow(double(image_orig)/255, 'Border', 'tight');
|
|
|
|
else
|
|
|
|
imshow(double(image_orig), 'Border', 'tight');
|
|
|
|
end
|
|
|
|
axis equal;
|
|
|
|
hold on;
|
|
|
|
end
|
|
|
|
|
|
|
|
for i=1:size(bboxs,2)
|
|
|
|
|
|
|
|
% Convert from the initial detected shape to CLM model parameters,
|
|
|
|
% if shape is available
|
|
|
|
|
|
|
|
bbox = bboxs(:,i);
|
|
|
|
|
|
|
|
if(~isempty(det_shapes))
|
|
|
|
shape = det_shapes(:,:,i);
|
|
|
|
inds = [1:60,62:64,66:68];
|
|
|
|
M = pdm.M([inds, inds+68, inds+68*2]);
|
|
|
|
E = pdm.E;
|
|
|
|
V = pdm.V([inds, inds+68, inds+68*2],:);
|
|
|
|
[ a, R, T, ~, params, err, shapeOrtho] = fit_PDM_ortho_proj_to_2D(M, E, V, shape);
|
|
|
|
g_param = [a; Rot2Euler(R)'; T];
|
|
|
|
l_param = params;
|
|
|
|
|
|
|
|
% Use the initial global and local params for clm fitting in the image
|
|
|
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams, 'gparam', g_param, 'lparam', l_param);
|
|
|
|
else
|
|
|
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams);
|
|
|
|
end
|
|
|
|
|
|
|
|
% shape correction for matlab format
|
|
|
|
shape = shape + 1;
|
|
|
|
|
|
|
|
if(verbose)
|
|
|
|
|
|
|
|
% valid points to draw (not to draw self-occluded ones)
|
|
|
|
v_points = logical(patches(1).visibilities(view_used,:));
|
|
|
|
|
|
|
|
try
|
|
|
|
|
|
|
|
plot(shape(v_points,1), shape(v_points',2),'.r','MarkerSize',20);
|
|
|
|
plot(shape(v_points,1), shape(v_points',2),'.b','MarkerSize',10);
|
|
|
|
|
|
|
|
catch warn
|
|
|
|
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
|
|
|
|
end
|