2016-07-31 22:31:17 +02:00
|
|
|
function [meanError, all_rot_preds, all_rot_gts, meanErrors, all_errors, rels_all, seq_ids] = calcIctError(resDir, gtDir)
|
2016-04-28 21:40:36 +02:00
|
|
|
%CALCICTERROR Summary of this function goes here
|
|
|
|
% Detailed explanation goes here
|
|
|
|
|
|
|
|
polhemus = 'polhemusNorm.csv';
|
|
|
|
|
2017-11-07 08:25:44 +01:00
|
|
|
sequences = dir([resDir '*.csv']);
|
2016-04-28 21:40:36 +02:00
|
|
|
|
|
|
|
rotMeanErr = zeros(numel(sequences),3);
|
|
|
|
rotRMS = zeros(numel(sequences),3);
|
|
|
|
rot = cell(1,numel(sequences));
|
|
|
|
rotg = cell(1,numel(sequences));
|
|
|
|
|
|
|
|
rels_all = [];
|
|
|
|
|
2016-07-31 22:31:17 +02:00
|
|
|
seq_ids = {};
|
|
|
|
|
2016-04-28 21:40:36 +02:00
|
|
|
for i = 1:numel(sequences)
|
|
|
|
|
|
|
|
[~, name,~] = fileparts(sequences(i).name);
|
|
|
|
|
2018-02-25 10:57:46 +01:00
|
|
|
fname = [resDir '/' sequences(i).name];
|
|
|
|
if(i == 1)
|
|
|
|
% First read in the column names
|
|
|
|
tab = readtable(fname);
|
|
|
|
column_names = tab.Properties.VariableNames;
|
|
|
|
|
|
|
|
confidence_id = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'confidence'));
|
|
|
|
rot_ids = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'pose_R'));
|
|
|
|
end
|
|
|
|
|
|
|
|
all_params = dlmread(fname, ',', 1, 0);
|
|
|
|
|
|
|
|
rot{i} = all_params(:, rot_ids);
|
|
|
|
rels = all_params(:, confidence_id);
|
|
|
|
|
2016-04-28 21:40:36 +02:00
|
|
|
% the reliabilities of head pose
|
|
|
|
rels_all = cat(1, rels_all, rels);
|
2018-02-25 10:57:46 +01:00
|
|
|
[txg tyg tzg rxg ryg rzg] = textread([gtDir name '/' polhemus], '%f,%f,%f,%f,%f,%f');
|
2016-04-28 21:40:36 +02:00
|
|
|
|
|
|
|
rotg{i} = [rxg ryg rzg];
|
|
|
|
|
|
|
|
% Correct the first frame so it corresponds to (0,0,0), as slightly
|
|
|
|
% different pose might be assumed frontal and this corrects for
|
|
|
|
% that
|
|
|
|
|
|
|
|
% Work out the correction matrix for ground truth
|
|
|
|
rot_corr_gt = Euler2Rot(rotg{i}(1,:));
|
|
|
|
for r_e = 1:size(rotg{i},1)
|
|
|
|
rot_curr_gt = Euler2Rot(rotg{i}(r_e,:));
|
|
|
|
rot_new_gt = rot_corr_gt' * rot_curr_gt;
|
|
|
|
rotg{i}(r_e,:) = Rot2Euler(rot_new_gt);
|
|
|
|
end
|
|
|
|
|
|
|
|
% Work out the correction matrix for estimates
|
|
|
|
rot_corr_est = Euler2Rot(rot{i}(1,:));
|
|
|
|
for r_e = 1:size(rot{i},1)
|
|
|
|
rot_curr_est = Euler2Rot(rot{i}(r_e,:));
|
|
|
|
rot_new_est = rot_corr_est' * rot_curr_est;
|
|
|
|
rot{i}(r_e,:) = Rot2Euler(rot_new_est);
|
|
|
|
end
|
|
|
|
|
|
|
|
% Convert the ground truth and estimates to degrees
|
|
|
|
rot{i} = rot{i} * (180/ pi);
|
|
|
|
rotg{i} = rotg{i} * (180/ pi);
|
|
|
|
|
|
|
|
% Now compute the errors
|
|
|
|
rotMeanErr(i,:) = mean(abs((rot{i}(:,:)-rotg{i}(:,:))));
|
|
|
|
rotRMS(i,:) = sqrt(mean(((rot{i}(:,:)-rotg{i}(:,:))).^2));
|
2016-07-31 22:31:17 +02:00
|
|
|
|
|
|
|
seq_ids = cat(1, seq_ids, repmat({[name 'ict']}, size(rot{i},1), 1));
|
|
|
|
|
2016-04-28 21:40:36 +02:00
|
|
|
end
|
|
|
|
allRot = cell2mat(rot');
|
|
|
|
allRotg = cell2mat(rotg');
|
|
|
|
meanErrors = rotMeanErr;
|
|
|
|
meanError = mean(abs((allRot(:,:)-allRotg(:,:))));
|
|
|
|
all_errors = abs(allRot-allRotg);
|
|
|
|
rmsError = sqrt(mean(((allRot(:,:)-allRotg(:,:))).^2));
|
|
|
|
errorVariance = var(abs((allRot(:,:)-allRotg(:,:))));
|
|
|
|
|
|
|
|
all_rot_preds = allRot;
|
|
|
|
all_rot_gts = allRotg;
|
|
|
|
end
|
|
|
|
|